首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coral reefs of Tanga, Tanzania were recognized as a national conservation priority in the early 1970s, but the lack of a management response led to damage by dynamite, beach seines, and high numbers of fishers until the mid 1990s. Subsequently, an Irish Aid funded IUCN Eastern Africa program operated from 1994 to mid 2007 to implement increased management aimed at reducing these impacts. The main effects of this management were to establish collaborative management areas, reduce dynamite and seine net fishing, and establish small community fisheries closures beginning in 1996. The ecology of the coral reefs was studied just prior to the initiation of this management in 1996, during, 2004, and a few years after the project ended in 2010. The perceptions of resource users towards management options were evaluated in 2010. The ecological studies indicated that the biomass of fish rose continuously during this period from 260 to 770 kg/ha but the small closures were no different from the non-closure areas. The benthic community studies indicate stability in the coral cover and community composition and an increase in coralline algae and topographic complexity over time. The lack of change in the coral community suggests resilience to various disturbances including fisheries management and the warm temperature anomaly of 1998. These results indicate that some aspects of the management program had been ecologically successful even after the donor program ended. Moreover, the increased compliance with seine net use and dynamite restrictions were the most likely factors causing this increase in fish biomass and not the closures. Resource users interviewed in 2010 were supportive of gear restrictions but there was considerable between-community disagreement over the value of specific restrictions. The social-ecological results suggest that increased compliance with gear restrictions is largely responsible for the improvements in reef ecology and is a high priority for future management programs.  相似文献   

2.
Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.  相似文献   

3.
The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibling reconstruction analyses based on 23 microsatellite DNA loci. We found that, contrary to previous findings in this system, self-recruitment (SR) was virtually absent at both the reef (0.4–0.5% at 0.15 km2) and the lagoon scale (0.6–0.8% at approx. 700 km2). While approximately 25% of the collected juveniles were identified as potential siblings, the majority of sibling pairs were sampled from separate reefs. Integrating our findings with earlier research from the same system suggests that geographical setting and life-history traits alone are not suitable predictors of SR and that high levels of localized recruitment are not universal in coral reef fishes.  相似文献   

4.
United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas.  相似文献   

5.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

6.
Protection from fishing generally results in an increase in the abundance and biomass of species targeted by fisheries within marine reserve boundaries. Natural refuges such as depth may also protect such species, yet few studies in the Indo Pacific have investigated the effects of depth concomitant with marine reserves. We studied the effects of artisanal fishing and depth on reef fish assemblages in the Kubulau District of Vanua Levu Island, Fiji, using baited remote underwater stereo-video systems. Video samples were collected from shallow (5–8 m) and deep (25–30 m) sites inside and outside of a large old marine reserve (60.6 km2, 13 years old) and a small new marine reserve (4.25 km2, 4 years old). Species richness tended to be greater in the shallow waters of the large old reserve when compared to fished areas. In the deeper waters, species richness appeared to be comparable. The difference in shallow waters was driven by species targeted by fisheries, indicative of a depth refuge effect. In contrast, differences in the abundance composition of the fish assemblage existed between protected and fished areas for deep sites, but not shallow. Fish species targeted by local fisheries were 89% more abundant inside the large old reserve than surrounding fished areas, while non-targeted species were comparable. We observed no difference in the species richness or abundance of species targeted by fisheries inside and outside of the small new reserve. This study suggests that artisanal fishing impacts on the abundance and species richness of coral reef fish assemblages and effects of protection are more apparent with large reserves that have been established for a long period of time. Observed effects of protection also vary with depth, highlighting the importance of explicitly incorporating multiple depth strata in studies of marine reserves.  相似文献   

7.

In a time of unprecedented ecological change, understanding natural biophysical relationships between reef resilience and physical drivers is of increasing importance. This study evaluates how wave forcing structures coral reef benthic community composition and recovery trajectories after the major 2015/2016 bleaching event in the remote Chagos Archipelago, Indian Ocean. Benthic cover and substrate rugosity were quantified from digital imagery at 23 fore reef sites around a small coral atoll (Salomon) in 2020 and compared to data from a similar survey in 2006 and opportunistic surveys in intermediate years. Cluster analysis and principal component analysis show strong separation of community composition between exposed (modelled wave exposure > 1000 J m−3) and sheltered sites (< 1000 J m−3) in 2020. This difference is driven by relatively high cover of Porites sp., other massive corals, encrusting corals, soft corals, rubble and dead table corals at sheltered sites versus high cover of pavement and sponges at exposed sites. Total coral cover and rugosity were also higher at sheltered sites. Adding data from previous years shows benthic community shifts from distinct exposure-driven assemblages and high live coral cover in 2006 towards bare pavement, dead Acropora tables and rubble after the 2015/2016 bleaching event. The subsequent recovery trajectories at sheltered and exposed sites are surprisingly parallel and lead communities towards their respective pre-bleaching communities. These results demonstrate that in the absence of human stressors, community patterns on fore reefs are strongly controlled by wave exposure, even during and after widespread coral loss from bleaching events.

  相似文献   

8.
McClanahan TR 《Oecologia》2008,155(1):169-177
The hypothesis that herbivory is higher in areas without fishing and will increase the rate at which hard coral communities return to pre-disturbance conditions was tested in and out of the marine protected areas (MPA) of Kenya after the 1998 El Niño Southern Oscillation (ENSO). Herbivory was estimated by assay and biomass methods, and both methods indicated higher herbivory in fishery closures. Despite higher herbivory, the effect of the ENSO disturbance was larger within these closures, with reefs undergoing a temporary transition from dominance by hard and soft coral to a temporary dominance of turf and erect algae that ended in the dominance of calcifying algae, massive Porites, Pocillopora and a few faviids six years after the disturbance. The fished reefs changed the least but had a greater cover of turf and erect algae and sponge shortly after the disturbance. Higher herbivory in the fishery closures reduced the abundance and persistence of herbivore-susceptible erect algae and created space and appropriate substratum for recruiting corals. Nonetheless, other post-settlement processes may have had strong influences such that annual rates of coral recovery were low (~2%) and not different between the management regimes. Recovery, as defined as and measured by the return to pre-disturbance coral cover and the dominant taxa, was slower in fishery closures than unmanaged reefs.  相似文献   

9.
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.  相似文献   

10.
Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size‐structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US‐affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size‐based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.  相似文献   

11.
The carrying capacity of the French Frigate Shoals (FFS) region for the endangered Hawaiian monk seal was appraised using an updated version of the original FFS Ecopath model ( Polovina 1984 ). Model parameters were updated using recent literature, and data from surveys of the seal population and its bottom‐associated prey. Together they produced a static mass balance model for 1998 when the prey surveys began. The Ecopath‐estimated monk seal biomass was 0.0045 t/km2, which was in close agreement with the biomass calculated from monk seal field beach counts (0.0046 t/km2). Model simulations through time were done in Ecosim using the Ecopath balanced model and included fisheries data time series from 1998 to 2008. Monk seal biomass declined concurrently with decreases in benthic bottomfish biomass, which were influenced by large‐scale changes in the environment of the North Pacific. This model scenario was extended from 2010, when the last permitted fishery in the Northwestern Hawaiian Islands was closed, through to 2040, assuming a constant environmental signal. Model results for this time period did not show a recovery of monk seals that exceeded the initial 1998 model biomass levels, highlighting the importance of including environmental variability in estimates of monk seals recovery at FFS.  相似文献   

12.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

13.
Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models’ predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral reefs provide to societies in the face of climate change.  相似文献   

14.
Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.  相似文献   

15.
A scarcity of life-history data currently exists for many exploited coral reef fishes, hindering our ability to interpret fishery dynamics and develop sound conservation policies. In particular, parrotfishes (Family Labridae) represent a ubiquitous and ecologically important group that is increasingly prevalent in commercial and artisanal fisheries worldwide. We used both fishery-dependent and fishery-independent data to examine the effect of life histories on vulnerability to overexploitation in parrotfishes. Vulnerability for each species was derived from independent measures associated with both temporal (20-year catch records) and spatial datasets. Most life-history traits examined were significant predictors of vulnerability across species, but their relative utility differed considerably. Length-based traits (e.g., lengths at maturity and sex change, maximum length) were generally superior to age-based traits (e.g., life span), but one age-based trait, age at female maturation, was the best predictor. The results suggest that easily derived metrics such as maximum length can be effective measures of sensitivity to exploitation when applied to phylogenetically related multispecies assemblages, but more holistic and comprehensive age-based demographic data should be sought, especially in data-deficient and heavily impacted regions. Given the increasing prevalence of parrotfishes in the global coral reef harvest, species-specific responses demonstrate the capacity for heavy fishing pressure to alter parrotfish assemblages considerably.  相似文献   

16.
Marine Protected Areas are usually static, permanently closed areas. There are, however, both social and ecological reasons to adopt dynamic closures, where reserves move through time. Using a general theoretical framework, we investigate whether dynamic closures can improve the mean biomass of herbivorous fishes on reef systems, thereby enhancing resilience to undesirable phase-shifts. At current levels of reservation (10–30%), moving protection between all reefs in a system is unlikely to improve herbivore biomass, but can lead to a more even distribution of biomass. However, if protected areas are rotated among an appropriate subset of the entire reef system (e.g. rotating 10 protected areas between only 20 reefs in a 100 reef system), dynamic closures always lead to increased mean herbivore biomass. The management strategy that will achieve the highest mean herbivore biomass depends on both the trajectories and rates of population recovery and decline. Given the current large-scale threats to coral reefs, the ability of dynamic marine protected areas to achieve conservation goals deserves more attention.  相似文献   

17.
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.  相似文献   

18.
Fisheries exploitation represents a considerable threat to coral reef fish resources because even modest levels of extraction can alter ecological dynamics via shifts of stock size, species composition, and size-structure of the fish assemblage. Although species occupying higher trophic groups are known to suffer the majority of exploitative effects, changes in composition among lower trophic groups may be major, though are not frequently explored. Using size-based biomass spectrum analysis, we investigate the effects of fishing on the size-structure of coral reef fish assemblages spanning four geopolitical regions and determine if patterns of exploitation vary across trophic groups. Our analyses reveal striking evidence for the variety of effects fisheries exploitation can have on coral reef fish assemblages. When examining biomass spectra across the entire fish assemblage we found consistent evidence of size-specific exploitation, in which large-bodied individuals experience disproportionate reductions. The pattern was paralleled by and likely driven by, strongly size-specific reductions among top predators. In contrast, evidence of exploitation patterns was variable among lower trophic groups, in many cases including evidence of reductions across all size classes. The breadth of size classes and trophic groups that showed evidence of exploitation related positively to local human population density and diversity of fishing methods employed. Our findings highlight the complexity of coral reef fisheries and that the effects of exploitation on coral reefs can be realized throughout the entire fish assemblage, across multiple trophic groups and not solely restricted to large-bodied top-predators. Size-specific changes among fishes of lower trophic groups likely lead to altered ecological functioning of heavily exploited coral reefs. Together these findings reinforce the value of taking a multi-trophic group approach to monitoring and managing coral reef fisheries.  相似文献   

19.
Marine Protected Areas (MPAs) are known to enhance diversity, density and biomass of coral reef fishes and to modify the size and trophic structures of these fish assemblages. Opening to fishing has the opposite effects, but on a much shorter time scale. The present study compares the evolution of the fish assemblages of two adjacent reef zones, both initially MPAs, one of them being afterwards opened to fishing. The study was conducted on Aboré Reef, a New Caledonian barrier reef (SW Pacific) which constituted a 148 km2 marine protected area, of which 69 km2 are within the lagoon. Two surveys of a coral reef fish assemblage, using underwater visual censuses, were performed, the first one was conducted in July 1993 following 5 years of protection from fishing, the second one was conducted in July 1995; part of the reef having been opened to fishing activity in September 1993. This study examined the effects of two factors on these fish communities: time (1993 vs. 1995) and zone (reefs protected from fishing vs. unprotected reefs); the interaction of these two factors indicating an effect of either protection or opening to fishing. Diversity (species/transect), density and biomass were tested for all species together (377 species), then according to diet, size and commercial use. There was a significant decrease over time of most values in both fished and unfished areas, the decrease being greater in the zone opened to fishing. The magnitude of decrease over time was within the range of known time variations from other studies in New Caledonia and other Pacific locations. However, this decrease was so large that it prevented the detection of effects linked to protection. Only some minor effects could be detected for 16 species with no specific pattern according to diet, size or use. The density and biomass of species of low commercial value were also affected by opening to fishing. Relative changes in diversity could be better detected than relative changes in density or biomass. This study demonstrates that on a short-term basis (2 years), natural variations can be of larger magnitude than changes that may be induced by management options, especially when fishing pressure is not very high.  相似文献   

20.
This study addresses why adjacent sites on coral reefs are different, why some places support so few coral species, and how human impacts are affecting coral community dynamics and ultimately diversity. The paper includes a brief review outlining what theory tells us and how that theory relates to empirical data. A metapopulation and a metacommunity model are introduced. The metapopulation model can be used to predict a species' probability of site occupancy and the metacommunity model can be used to predict the number of species supported at any one site. The models identify the primary mechanisms that generate and maintain local (10s m2–10s km2) coral diversity based on a regional (100s km2) perspective. Local diversity appears regulated by differential post-settlement mortality that in turn leads to local extinction of some species. Indeed, harsh local environments cause high levels of local extinction and these environments support few coral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号