首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The effect of cadmium (Cd) was investigated on the in vitro activities of leaf and root enzymes involved in carbon (C) and nitrogen (N) metabolism of bean (Phaseolus vulgaris L. cv. Morgane). Cd induced a high increase in maximal extractable activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). Cd promoted ammonium accumulation in leaves and roots, and a tight correlation was observed between ammonium amount and GDH activity. Changes in GDH activity appear to be mediated by the increase in ammonium levels by Cd treatment. Cd stress also enhanced the activities of phosphoenolypyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH, EC 1.1.1.42) in leaves while they were inhibited in roots. Immuno-titration, the PEPC sensitivity to malate and PEPC response to pH indicated that the increase in PEPC activity by Cd was due to de novo synthesis of the enzyme polypeptide and also modification of the phosphorylation state of the enzyme. Cd may have modified, via a modulation of PEPC activity, the C flow towards the amino acid biosynthesis. In leaves, Cd treatments markedly modified specific amino acid contents. Glutamate and proline significantly accumulated compared to those of the control plants. This study suggests that Cd stress is a part of the syndrome of metal toxicity, and that a readjustment of the co-ordination between N and C metabolism via the modulation of GDH, PEPC and ICDH activities avoided the accumulation of toxic levels of ammonium.  相似文献   

2.
Biochemical and physiological parameters associated with nitrogen metabolism were measured in nodules and roots of glasshouse-grown clones of two symbiotically ineffective alfalfa (Medicago sativa L.) genotypes supplied with either NO3 or NH4+. Significant differences were observed between genotypes for nodule soluble protein concentrations and glutamine synthetase (GS) and glutamate synthase (GOGAT) specific activities, both in untreated controls and in response to applied N. Nodule soluble protein of both genotypes declined in response to applied N, while nodule GS, GOGAT, and glutamate dehydrogenase (GDH) specific activities either decreased or remained relatively constant. In contrast, no genotype differences were observed in roots for soluble protein concentrations and GS, GOGAT, and GDH specific activities, either in untreated controls or in response to applied N. Root soluble protein levels and GS and GOGAT specific activities of N-treated plants increased 2- to 4-fold within 4 days and then decreased between days 13 and 24. Root GDH specific activity of NH4+-treated plants increased steadily throughout the experiment and was 50 times greater than root GS or GOGAT specific activities by day 24.  相似文献   

3.
Calli derived from leaves and radicles of B. ternifolia were grown on Murashige and Skoog (MS) basal medium, and the effects of different nitrogen sources on the rate of callus growth and on the enzymes related to nitrogen assimilation were studied. Ammonium alone did not support callus growth unless a Krebs-cycle intermediate was added to the medium. The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (EC 1.4.1.2) were measured in homogenates of callus grown on media supplied with different nitrogen sources. The results indicate that leaf and root calli have similar levels of these enzymes when grown on MS medium (Murashige and Skoog 1962. Physiol. Plant. 15, 473–497). However, when the calli were supplied with glutamine as the sole nitrogen source, the activity of glutamate synthase increased in leaf callus but was almost completely inhibited in root callus. The results indicate that calli originated from different B. ternifolia tissues do not have the same biochemical dedifferentiated state.  相似文献   

4.
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100 mM NaCl for 3 d. The biomass and NO3 uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3 uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.  相似文献   

5.
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO3/NH4+ or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary, GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH4+ assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad's leaves.  相似文献   

6.
Glutamate dehydrogenase (GDH) specific activity and function have been studied in cell suspension cultures of carrot (Daucus carota L. cv Chantenay) in response to carbon and nitrogen supply in the culture medium. The specific activity of GDH was derepressed in sucrose-starved cells concomitant with protein catabolism, ammonium excretion, and the accumulation of metabolically active amino acids. The addition of sucrose led to a rapid decrease in GDH specific activity, an uptake of ammonium from the medium, and a decrease in amino acid levels. The extent of GDH derepression was correlated positively with cellular glutamate concentration. These findings strengthen the view that the function of GDH is the catabolism of glutamate, which under conditions of carbon stress provides carbon skeletons for tricarboxylic acid cycle activity.  相似文献   

7.
The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants’ capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.  相似文献   

8.
The influence of 50 and 100 μM Ni on the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) was studied in the wheat roots. Root fresh weight, tissue Ni, nitrate, ammonium, glutamate and protein concentrations were also determined. Exposure to Ni resulted in a marked reduction in fresh weight of the roots accompanied by a rapid accumulation of Ni in these organs. Both nitrate and ammonium contents in the root tissue were considerably enhanced by Ni stress. While protein content was not significantly influenced by Ni application, glutamate concentration was slightly reduced on the first day after treatment with the higher Ni dose. Treatment of the wheat seedlings with 100 μM Ni led to a decrease in NR activity; however, it did not alter the activation state of this enzyme. Decline in NiR activity observed after application of 100 μM Ni was more pronounced than that in NR. The activities of GS and NADH-GOGAT also showed substantial decreases in response to Ni stress with the latter being more susceptible to this metal. Starting from the fourth day, both aminating and deaminating GDH activities in the roots of the seedlings supplemented with Ni were lower in comparison to the control. While the activity of AspAT remained unaltered after Ni application that of AlaAT showed a considerable enhancement. The results indicate that exposure of the wheat seedlings to Ni resulted in a general depression of nitrogen assimilation in the roots. Increase in the glutamate-producing activity of AlaAT may suggest its involvement in supplying the wheat roots with this amino acid under Ni stress.  相似文献   

9.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

10.
NaCl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用   总被引:19,自引:1,他引:18  
在NaCl的胁迫下,水稻幼苗根和叶的谷氨酸合酶和谷氨酸脱氢酶的活性随着营养液中的NaCl浓度的升高而降低;游离NH4^+在叶中积累,在根中未见明显变化。与根相比,叶对NaCl的胁迫作用更为敏感。叶的NADH-GOGAT和NADH-GDH活性在NaCl胁迫降低的程度明显大于根。无论是否有NaCl存在,根的NADH-GDH活性明显高于叶。GS/GDH比值分析提示,对对照下,根中的NH4^存在,根的NA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号