首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
贵州草海越冬黑颈鹤觅食栖息地选择的初步研究   总被引:14,自引:0,他引:14  
李凤山 《生物多样性》1999,7(4):257-262
本文报道了利用Friedman非参数统计方法,研究越冬黑颈鹤(Grus nigricollis)在贵州草海对其觅食栖息地选择的结果。在草海的黑颈鹤越冬觅食栖息地可分为5种——莎草草甸、浅水沼泽、草地、玉米地和蔬菜地。黑颈鹤对莎草草甸的选择性最高,对玉米地的选择性最差,对其余类型栖息地的选择随地点的不同而不同。草海的人为活动很多,是影响黑颈鹤利用和选择栖息地的一个重要因素。本文也对改善黑颈鹤越冬栖息地的管理和保护提出了一些建议。  相似文献   

2.
2006年12月~2007年2月,采用秩变换分析法对北京野鸭湖湿地自然保护区越冬灰鹤群的觅食栖息地选择规律进行了研究.在保护区18种土地利用类型中,灰鹤的觅食柄息地主要为玉米地、沼泽草甸、水库冰面和草场等4种.越冬灰鹤对玉米地的选择性最高,草场的选择性最低,说明北京地区越冬灰鹤对人类活动的依赖性很大.同时发现,烧荒、翻地等耕作方式会大大降低食物的可获得性,影响灰鹤的觅食效率.  相似文献   

3.
The North American greater snow goose population has increased dramatically during the last 40 years. We evaluated whether refuge creation, changes in land use on the wintering and staging grounds, and climate warming have contributed to this expansion by affecting the distribution, habitat use, body condition, and migration phenology of birds. We also reviewed the effects of the increasing population on marshes on the wintering grounds, along the migratory routes and on the tundra in summer. Refuges established before 1970 may have contributed to the initial demographic increase. The most important change, however, was the switch from a diet entirely based on marsh plants in spring and winter (rhizomes of Scirpus/Spartina) to one dominated by crops (corn/young grass shoots) during the 1970s and 1980s. Geese now winter further north along the US Atlantic coast, leading to reduced hunting mortality. Their migratory routes now include portions of southwestern Québec where corn production has increased exponentially. Since the mid‐1960s, average temperatures have increased by 1–2.4°C throughout the geographic range of geese, which may have contributed to the northward shift in wintering range and an earlier migration in spring. Access to spilled corn in spring improved fat reserves upon departure for the Arctic and may have contributed to a high fecundity. The population increase has led to intense grazing of natural wetlands used by geese although these habitats are still largely undamaged. The foraging in fields allowed the population to exceed limits imposed by natural marshes in winter and spring, but also prevented permanent damage because of their overgrazing.  相似文献   

4.
To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P < 0.001, r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data. © 2011 The Wildlife Society.  相似文献   

5.
We studied ontogenetic behavior, migration, and wintering behavior of young Klamath River green sturgeon, Acipenser medirostris, in the laboratory to provide insight into likely behavior of wild sturgeon. Hatchling free embryos preferred cover but were poor swimmers and could not move farther than a few centimeters to cover. The poor swimming ability and cover preference of hatchlings suggests evolution for habitat selection of females to place eggs in habitat with cover for eggs (and hatchlings), and for egg characteristics (large, dense, and weakly adhesive) to cause rapid sinking into cover without drifting. A day or so after fish developed into larvae (first life interval feeding exogenously), day-12 larvae initiated a 12-day downstream nocturnal migration. A totally nocturnal migration is unlike other Acipenser migrants yet studied. Migrant larvae had a dark-colored body typical of other Acipenser species that migrate as larvae. Tail color was a dark black (black-tail phenotype) only during the early larva period, suggesting a morphological adaptation for migration, foraging, or both. Post-migrant larvae and early juveniles to day 84 foraged diurnally with a nocturnal activity peak. Day 110–181 juveniles moved downstream at night until water temperature decreased to about 8°C, indicating wild juveniles migrate downstream to wintering habitat. Habitat preference of month 9–10 wintering juveniles suggests wild juveniles are in deep pools with low light and some rock structure. Wintering juveniles were only active at night. Initiation and cessation of daily activity was at dusk and dawn during illumination changes of <1.0lx. This sensitivity to illumination has not been found before in sturgeons. During the first 10months of life, nocturnal activity of early life intervals is a dominant feature of migration, foraging, and wintering.  相似文献   

6.
Ruff Philomachus pugnax staging in the Netherlands forage in agricultural grasslands, where they mainly eat earthworms (Lumbricidae). Food intake and the surface availability of earthworms were studied in dairy farmland of southwest Friesland in March–April 2011. Daily changes in earthworm availability were quantified by counting visible earthworms. No earthworms were seen on the surface during daytime, but their numbers sharply increased after sunset and remained high during the night. Nevertheless, intake rates of individual Ruff in different grasslands measured during daytime showed the typical Holling type II functional response relationship with the surfacing earthworm densities measured at night. Radiotagging of Ruff in spring 2007 revealed that most, if not all, feeding occurs during the day, with the Ruff assembling at shoreline roosts at night. This raises the question of why Ruff do not feed at night, if prey can be caught more easily than during daytime. In March–May 2013 we experimentally examined the visual and auditory sensory modalities used by Ruff to find and capture earthworms. Five males were kept in an indoor aviary and we recorded them individually foraging on trays with 10 earthworms mixed with soil under various standardized light and white noise conditions. The number of earthworms discovered and eaten by Ruff increased with light level, but only when white noise was played, suggesting that although they can detect earthworms by sight, Ruff also use auditory cues. We suggest that although surfacing numbers of earthworms are highest during the night, diurnal intake rates are probably sufficient to avoid nocturnal foraging on a resource that is more available but perhaps less detectable at that time.  相似文献   

7.
Field borders are an effective conservation strategy for providing habitat to overwintering sparrows, and may be a venue through which beneficial insect populations are promoted. However, traditional fallow field borders lack sufficient pollen and nectar sources required to sustain beneficial insect populations; therefore, borders planted to a mix of native prairie flowers and grasses may be needed if increases in beneficial insect populations are desired. Although the value of fallow borders to birds has been established, little is known about bird use of beneficial insect habitats. Using single-observer transect surveys, we compared overwintering sparrow densities among 4 field border treatments (planted native warm season grasses and prairie flowers, planted prairie flowers only, fallow, and mowed) replicated around 9 organic crop fields from November to March 2009–2010 and 2010–2011. Sparrow densities were 5–10 times lower in mowed borders than in other border treatments in 2009–2010 and 2010–2011, but did not differ among planted and fallow borders in either year. Planted field borders may be a useful conservation practice for providing habitat for both overwintering sparrows and beneficial insects. © 2012 The Wildlife Society.  相似文献   

8.
ABSTRACT Waterfowl habitat conservation strategies in the Mississippi Alluvial Valley (MAV) and several other wintering areas assume carrying capacity is limited by available food, and increasing food resources is an effective conservation goal. Because existing research on winter food abundance and depletion is insufficient to test this hypothesis, we used harvested rice fields as model foraging habitats to determine if waste rice seed is depleted before spring migration. We sampled rice fields (n = 39 [winter 2000–2001], n = 69 [2001–2002]) to estimate seed mass when waterfowl arrived in late autumn and departed in late winter. We also placed exclosures in subsets of fields in autumn (n = 8 [2000–2001], n = 20 [2001–2002]) and compared seed mass inside and outside exclosures in late winter to estimate rice depletion attributable to waterfowl and other processes. Finally, we used an experiment to determine if the extent of rice depletion differed among fields of varying initial abundance and if the seed mass at which waterfowl ceased foraging or abandoned fields differed from a hypothesized giving-up value of 50 kg/ha. Mean seed mass was greater in late autumn 2000 than 2001 (127.0 vs. 83.9 kg/ha; P = 0.018) but decreased more during winter 2000–2001 than 2001–2002 (91.3 vs. 55.7 kg/ha) and did not differ at the end of winter (35.8 vs. 28.3 kg/ha; P = 0.651). Assuming equal loss to deterioration inside and outside exclosures, we estimated waterfowl consumed 61.3 kg/ha (48.3%) of rice present in late autumn 2000 and 21.1 kg/ha (25.1%) in 2001. When we manipulated late-autumn rice abundance, mean giving-up mass of rice seed was similar among treatments (48.7 kg/ha; P = 0.205) and did not differ from 50 kg/ha (P = 0.726). We integrated results by constructing scenarios in which waterfowl consumed rice at different times in winter, consumption and deterioration were competing risks, and consumption occurred only above 50 kg/ha. Results indicated waterfowl likely consumed available rice soon after fields were flooded and the amount consumed exceeded our empirical estimates but was ≤48% (winters pooled) of rice initially present. We suggest 1) using 50 kg/ha as a threshold below which profitability limits waterfowl feeding in MAV rice fields; 2) reducing the current estimate (130 kg/ha) of rice consumed in harvested fields to 47.1 kg/ha; and 3) increasing available rice by increasing total area of fields managed, altering management practices (e.g., staggered flooding), and exploring the potential for producing second or ratoon rice crops for waterfowl.  相似文献   

9.
We studied diet and habitat use of greater white-fronted geese (Anser albifrons) from autumn through spring on their primary staging and wintering areas in the Pacific Flyway, 1979–1982. There have been few previous studies of resource use and forage quality of wintering greater white-fronted geese in North America, and as a consequence there has been little empirical support for management practices pertaining to habitat conservation of this broadly distributed species. Observations of >2,500 flocks of geese and collections of foraging birds revealed seasonal and geographic variation in resource use reflective of changes in habitat availability, selection, and fluctuating physiological demands. Autumn migrants from Alaska arrived first in the Klamath Basin of California and southern Oregon, where they fed on barley, oats, wheat, and potatoes. Geese migrated from the Klamath Basin into the Central Valley of California in late autumn where they exploited agricultural crops rich in soluble carbohydrates, with geese in the Sacramento Valley feeding almost exclusively on rice and birds on the Sacramento–San Joaquin Delta primarily utilizing corn. White-fronted geese began their northward migration in late winter, and by early spring most had returned to the Klamath Basin where 37% of flocks were found in fields of new growth cultivated and wild grasses. Cereal grains and potatoes ingested by geese were low in protein (7–14%) and high in soluble nutrients (17–47% neutral detergent fiber [NDF]), whereas grasses were low in available energy (47–49% NDF) but high in protein (26–42%). Greater white-fronted geese are generalist herbivores and can exploit a variety of carbohydrate-rich cultivated crops, likely making these geese less susceptible to winter food shortages than prior to the agriculturalization of the North American landscape. However, agricultural landscapes can be extremely dynamic and may be less predictable in the long-term than the historic environments to which geese are adapted. Thus far greater white-fronted geese have proved resilient to changes in land cover in the Pacific Flyway and by altering their migration regime have even been able to adapt to changes in the availability of suitable forage crops. © 2010 The Wildlife Society.  相似文献   

10.
Ren X L  Jia Z K  Chen X L  Han Q F  Li R 《农业工程》2008,28(3):1006-1015
A field experiment was conducted to determine the effects of a rainwater-harvesting furrow/ridge system (RHFRS) on water use efficiency (WUE) and grain yield of spring com in different simulated rainfall treatments. Our results showed that when rainfall supply ranged between 230 and 440 mm, the rainwater-harvesting furrow/ridge system increased surface temperature by 0.7–1°C at the depth of 10 cm and increased soil water storage by 5%–12% in the soil layer of 0–120 cm compared with the control. Emergence was also more rapid in the furrow-ridge system. Spring corn yield in the rainwater-harvesting furrow/ridge system was 83% higher in the 230 mm rainfall treatment, 43% higher in the 340 mm rainfall treatment, and 11% higher in the 440 mm rainfall treatment compared with the control. Similarly, WUE was 77% higher in the 230 mm rainfall treatment, 43% higher in the 340 mm treatment, and 10% higher in the 440 mm treatment than those of the control under the corresponding rainfalls. In summary, results from this study indicate that 440 mm rainfall during the spring corn growing season is the upper limit for which the rainwater-harvesting furrow/ridge system should be adopted.  相似文献   

11.
Sensitivity of bats to land use change depends on their foraging ecology, which varies among species based on ecomorphological traits. Additionally, because prey availability, vegetative clutter, and temperature change throughout the year, some species may display seasonal shifts in their nocturnal habitat use. In the Coastal Plain of South Carolina, USA, the northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) are species of conservation concern that are threatened by habitat loss. Our objective was to identify characteristics of habitat used by these species during their nightly active period and compare use between summer and winter. We conducted acoustic surveys at 125 sites during May–August and at 121 of the same 125 sites December–March 2018 and 2019 in upland forests, bottomland forests, fields, ponds, and salt marsh and used occupancy models to assess habitat use. The northern long-eared bat and southeastern myotis (i.e., myotis bats) used sites that were closer to hardwood stands, pine stands, and fresh water year-round. We did not identify any strong predictors of tri-colored bat habitat use in summer, but during winter they used bottomland forests, fields, and ponds more than salt marsh and upland forests. During summer and winter, northern yellow bats used sites close to fresh water and salt marsh. Additionally, during summer they used fields, ponds, and salt marsh more than upland and bottomland forests, but in winter they used bottomland forests, fields, and ponds more than upland forest and salt marsh. Our results highlight important land cover types for bats in this area (e.g., bottomland forests, ponds, and salt marsh), and that habitat use changes between seasons. Accounting for and understanding how habitat use changes throughout the year will inform managers about how critical habitat features may vary in their importance to bats throughout the year. © 2021 The Wildlife Society.  相似文献   

12.
The lesser kestrel Falco naumanni is a globally threatened species, whose breeding populations seem to have declined due to recent agricultural changes. However, nothing is known about habitat requirements during winter, despite the fact that several populations are overwintering in areas affected by agricultural transformations. We studied population size and habitat selection by wintering lesser kestrels in a Spanish pseudosteppe (Los Monegros), where traditional fallow systems for cereals are rapidly being replaced by intensive and/or irrigated crops. About 15% of the adult population wintered in the study area, as determined by systematic roadside counts compared with accurate censuses made during the breeding season. Wintering lesser kestrels preferred to forage on field margins and stubble, while avoiding abandoned fields, ploughs, scrubland, growing cereals and, mainly, the expanding irrigated crops. This work confirms the need to incorporate the habitat requirements of threatened species over their complete annual cycles; while breeding lesser kestrels scarcely use fallow (ploughed at that time), during the winter, fallow (stubble at that time) is their main foraging habitat. Both fallow land and the present agricultural calendar should be maintained to assure the conservation of wintering lesser kestrel populations.  相似文献   

13.
Volker Salewski 《Ostrich》2013,84(1-2):191-193
Salewski, V. 2000. Microhabitat use and feeding strategies of the Pied Flycatcher and the Willow Warbler in their West-African winter quarters compared with resident species. Ostrich 71 (1 & 2): 191–193.

Habitat choice, microhabitat and foraging behaviour of the palaearctic Pied Flycatcher and Willow Warbler are described in their West-African wintering areas and are compared with those of resident species. The migrants were more flexible in habitat choice and foraging techniques, but in general did not feed in more open habitat.  相似文献   

14.
Coastal pastures are common agroecosystems adjacent to estuarine areas that can provide valuable habitat for wildlife, particularly for migratory shorebirds. Disentangling the factors that influence coastal pasture use by wintering shorebirds will provide new insights into its role for buffering human disturbances and habitat loss in intertidal areas. We examined whether numbers of two shorebirds (Eurasian curlew and Black-tailed godwit) foraging actively on coastal pastures was affected by weather conditions, tidal stage (low/high tide) and number of harvesters at intertidal areas throughout winter. Both species frequently used coastal pastures and most individuals foraged actively there. The average percentage of the total wintering population of curlews and godwits foraging on coastal pastures was 27.4 and 7.8 %, respectively, and was significantly higher during high tide compared to low tide. The number of harvesters on mudflats also had a positive significant effect in explaining the presence of curlews, and to a lesser extent for godwits, on coastal pastures, and accumulated rainfall had a positive effect for both species too. These supratidal areas were consistently used as alternative foraging grounds during low tide by curlews, as well as supplementary foraging areas during high tide by wintering populations of both large shorebirds. By supplementary foraging, wintering curlews, and probably godwits, seemed to compensate for a negative effect of the presence of harvesters on their foraging activity. We recommend managing of those coastal agricultural fields adjacent to intertidal foraging grounds in order to increase the availability of supratidal foraging habitats for declining shorebird populations. These habitats may thus have a beneficial role in sustaining populations of wintering shorebirds, but further studies are needed to estimate if birds can compensate for any shortfall in daily energy budget by supplementary foraging on coastal pastures, thus providing insights into whether they are involved in large-scale population regulation of migratory birds.  相似文献   

15.
The floodplains of the West‐African Sahel region have experienced extensive habitat transformation during the past four decades, coinciding with an impoverishment of raptor populations. We investigated foraging patterns of Palaearctic migratory Eurasian Marsh Harriers Circus aeruginosus, Pallid Harriers C. macrourus and Montagu’s Harriers C. pygargus on a floodplain system in northern Cameroon to assess species, sex‐ and age‐related habitat preferences. Sex and age have rarely been incorporated into general studies of raptor habitat associations, despite clear evidence of intrasexual and age‐related differences in foraging strategies and diet composition, potentially carrying strong conservation implications. We found evidence of sexual differences in foraging preference related to land use, particularly in the most sexually dimorphic Pallid Harrier, and evidence that juveniles used different habitats to adults. This constitutes the first quantitative documentation of such differentiation by Palaearctic raptors on African wintering grounds, indicating that general patterns of habitat use in wintering raptors may obscure sex‐ and age‐specific preferences. Contrary to expectations, we found limited evidence for interspecific foraging segregation. Food partitioning by prey mass was related to harrier body mass and facilitated by a diverse availability of prey on human‐transformed floodplains. Anticipated further large‐scale conversion of floodplain habitat into predominantly desiccated grasslands raises concerns about the survival of wintering harriers.  相似文献   

16.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

17.
蚯蚓在植物修复芘污染土壤中的作用   总被引:1,自引:1,他引:0  
潘声旺  魏世强  袁馨  曹生宪 《生态学报》2011,31(5):1349-1355
采用盆栽试验法,研究了蚯蚓(Pheretima hupeiensis)在植物修复芘污染土壤中的作用。结果显示,试验浓度(20.24-321.42 mg/kg) 范围内,蚯蚓活动促进了芘污染土壤中修复植物黑麦草(Lolium multiforum)黑麦草的生长,其根冠比明显增大。添加蚯蚓72 d后,种植黑麦草的土壤中芘的去除率高达60.01%-86.26%,其平均去除率(74.66%)比无蚯蚓活动的土壤-植物系统(64.55%)提高10.11%,比无植物对照组(18.24%)提高56.42%。各种生物、非生物修复因子中,植物-微生物交互作用对芘去除的平均贡献率(51.75%)最为突出,比无蚯蚓活动时(44.94%)提高6.81%。说明蚯蚓活动可强化土壤-植物系统对土壤芘污染的修复作用。  相似文献   

18.
Strips of fallow vegetation along cropland borders are an effective strategy for providing brood habitat for declining populations of upland game birds (Order: Galliformes), including northern bobwhite (Colinus virginianus), but fallow borders lack nectar-producing vegetation needed to sustain many beneficial insect populations (e.g., crop pest predators, parasitoids, and pollinator species). Planted borders that contain mixes of prairie flowers and grasses are designed to harbor more diverse arthropod communities, but the relative value of these borders as brood habitat is unknown. We used groups of six human-imprinted northern bobwhite chicks as a bioassay for comparing four different border treatments (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) as northern bobwhite brood habitat from June-August 2009 and 2010. All field border treatments were established around nine organic crop fields. Groups of chicks were led through borders for 30-min foraging trials and immediately euthanized, and eaten arthropods in crops and gizzards were measured to calculate a foraging rate for each border treatment. We estimated arthropod prey availability within each border treatment using a modified blower-vac to sample arthropods at the vegetation strata where chicks foraged. Foraging rate did not differ among border treatments in 2009 or 2010. Total arthropod prey densities calculated from blower-vac samples did not differ among border treatments in 2009 or 2010. Our results showed plant communities established to attract beneficial insects should maximize the biodiversity potential of field border establishment by providing habitat for beneficial insects and young upland game birds.  相似文献   

19.
American woodcock (Scolopax minor; woodcock) migratory connectivity (i.e., association between breeding and wintering areas) is largely unknown, even though current woodcock management is predicated on such associations. Woodcock are currently managed in the Eastern and Central management regions in the United States with the boundary between management regions analogous to the boundary between the Atlantic and Mississippi flyways, based largely on analysis of band returns from hunters. Factors during migration influence survival and fitness, and existing data derived from banding and very high frequency telemetry provide only coarse-scale information to assess factors influencing woodcock migratory movement patterns and behavior. To assess whether current management-region boundaries correspond with woodcock migratory connectivity in the Central Management Region and to describe migration patterns with higher resolution than has been previously possible, we deployed satellite transmitters on 73 woodcock (25 adult and 28 juvenile females, and 8 adult and 12 juvenile males) and recorded 87 autumn or spring migration paths from 2014 to 2016. Marked woodcock used 2 primary migrations routes: a Western Route and a Central Route. The Western Route ran north-south, connecting the breeding and wintering grounds within the Central Management Region. The hourglass-shaped Central Route connected an area on the wintering grounds reaching from Texas to Florida, to sites throughout northeastern North America in both the Eastern Management Region and Central Management Region and woodcock following this route migrated through the area between the Appalachian Mountains and the Mississippi Alluvial Valley in western Tennessee during autumn and spring. Two of 17 woodcock captured associated with breeding areas in Michigan, Wisconsin, or Minnesota migrated to wintering sites in the Eastern Management Region and 12 marked woodcock captured on wintering areas in Texas and Louisiana migrated to breeding sites in the Eastern Management Region. Woodcock that used the Western Route exhibited high concentrations of stopovers during spring in the Arkansas Ozark Mountains and northern Missouri, and along the Mississippi River on the border between Wisconsin and Minnesota, and autumn concentrations of stopovers in southwestern Iowa, central Missouri, the Arkansas portion of the Ozark Mountains, and around the junction of Texas, Louisiana, Oklahoma, and Arkansas. Woodcock that used the Central Route exhibited high concentrations of stopovers during spring in northern Mississippi through western Tennessee, western Kentucky, and the Missouri Bootheel, and autumn concentrations of stopovers in northern Illinois, southwestern Ohio, and the portions of Kentucky and Tennessee west of the Appalachian Mountains. We suggest that current management of woodcock based on 2 management regions may not be consistent with the apparent lack of strong migratory connectivity we observed. Our results also suggest where management of migration habitat might be most beneficial to woodcock. © 2019 The Wildlife Society.  相似文献   

20.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:4,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号