首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Uroporphyrinogen decarboxylase (Uro-d; EC 4.1.1.37), the fifth enzyme in the heme biosynthetic pathway, which catalyzes the sequential decarboxylation of uroporphyrinogen to coproporphyrinogen, is encoded by the HEM12 gene in Saccharomyces cerevisiae. The HEM12 gene is transcribed into a major short mRNA and a minor longer one, approximately 1.35 and 1.55 kb, respectively, in size, and that differ in the 5 untranslated region. Uroporphyric mutants, which have no mutations in the HEM12 gene but accumulate uroporphyrinogen, a phenotype chracteristic of partial Uro-d deficiency, were investigated. Genetic analysis showed that the mutant phenotype depends on the combined action of two unlinked mutations, udt1 and either ipa1, ipa2, or ipa3. ipa1 is tightly linked to HEM12 The mutation udt1 apparently acts specifically on the HEM12 gene, and causes a six to tenfold decrease in the levels of the short HEM12 mRNA, in the -galactosidase activity of a HEM12-lacZ fusion, in immunodetectable protein and enzyme activity. But heme synthesis is normal and porphyrin accumulation was modest. The mutations ipa1, ipa2, and ipa3 had no phenotype on their own, but they caused an increase in porphyrin accumulation in a udt1 background. This multiplicity of genetic factors leading to uroporphyric yeast cells closely resembles the situation in human porphyria cutanea tarda.  相似文献   

2.
Nine new hem12 haploid mutants of baker's yeast (Saccharomyces cerevisiae), totally or partially deficient in uroporphyrinogen decarboxylase activity, were subjected to both genetic and biochemical analysis. The mutations sites studied are situated far apart within the HEM12 gene located on chromosome IV. Uroporphyrinogen decarboxylase activity in the cell-free extracts of the mutants was decreased by 50-100%. This correlated well with the decrease of haem formation and the increased accumulation and excretion of porphyrins observed in vivo. The pattern of porphyrins (uroporphyrin and its decarboxylation products) accumulated in the cells of mutants partially deficient in uroporphyrinogen decarboxylase activity did not differ significantly, although differences in vitro were found in the relative activity of the mutant enzyme at the four decarboxylation steps. The excreted porphyrins comprised mainly dehydroisocoproporphyrin or pentacarboxyporphyrin. In heterozygous hem12-1/HEM12 diploid cells, a 50% decrease in decarboxylase activity led to an increased accumulation of porphyrins as compared with the wild-type HEM12/HEM12 diploid, which points to the semi-dominant character of the hem12-1 mutation. The biochemical phenotypes of both the haploid and the heterozygous diploid resembles closely the situation encountered in porphyria cutanea tarda, the most common human form of porphyria.  相似文献   

3.
The HEM12 gene from Saccharomyces cerevisiae encodes uroporphyrinogen decarboxylase which catalyzes the sequential decarboxylation of the four acetyl side chains of uroporphyrinogen to yield coproporphyrinogen, an intermediate in protoheme biosynthesis. The gene was isolated by functional complementation of a hem12 mutant. Sequencing revealed that the HEM12 gene encodes a protein of 362 amino acids with a calculated molecular mass of 41,348 Da. The amino acid sequence shares 50% identity with human and rat uroporphyrinogen decarboxylase and shows 40% identity with the N-terminus of an open reading frame described in Synechococcus sp. We determined the sequence of two hem12 mutations which lead to a totally inactive enzyme. They correspond to the amino acid changes Gly33----Asp and Gly300----Asp, located in two evolutionarily conserved regions. Each of these substitutions impairs binding of substrates without affecting the overall conformation of the protein. These results argue that a single active center exists in uroporphyrinogen decarboxylase.  相似文献   

4.
A system for the positive selection of transational initiation suppressors in S. cerevisiae has been developed. A mutant with an ATA initiation codon in the HEM12 gene, encoding uroporphyrinogen decarboxylase, was used to select cis- and trans-acting suppressors. These suppressors partially restore growth on nonfermentable carbon sources, such as glycerol, but still allow the accumulation of porphyrins. All extragenic suppressors are mapped to the SUI1 locus, encoding initiation factor eIF1. The effect of the hem12 mutation is also partially reversed by the known SUI3 suppressor encoding the beta subunit of eIF2. In contrast, the sui2 suppressor encoding the a subunit of eIF2 does not affect the hem12 phenotype. The intragenic suppressors are able to restore the translation of hem12 due to the generation of additional, in frame AUG codons upstream of the hem12-14 mutation. Mutational analysis of the HEM12 leader sequence was also performed to determine the role of small open reading frames (uORFs) present upstream of the HEM12 ORF. Studies on the expression of integrated hem12-1/4-lacZ fusion, devoid of all upstream ATGs, indicate a lack of regulatory effect of uORFs on HEM12 translation.  相似文献   

5.
Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway.  相似文献   

6.
A study is described of the regulation of porphyrin synthesis in Escherichia coli using a heme-permeable, hemH deletion mutant, designated VS212. This strain utilizes only exogenous hemin that is supplied in the medium and accumulates porphyrins since the final step in the synthesis of heme is genetically blocked. It is possible, therefore, to monitor the rate of synthesis of heme by examining the accumulation of porphyrins. Using this system, we found that the rate of production of porphyrins depended on the availability of heme. The lower the concentration of hemin in the medium, the higher the level of porphyrins that accumulated. We next examined the mechanism responsible for the activation of porphyrin synthesis upon starvation for heme. The main activation occurred at the step that leads to the synthesis of 5-aminolevulinic acid (ALA). Starvation for heme induced the expression of a hemA-lacZ fusion gene, as previously reported, but an activation pathway that is independent of the hemA promoter was also identified. We found that starvation for heme caused the stringent response, and such starvation promoted the synthesis of porphyrins without having any effect on the expression of the hemA-lacZ fusion gene. We suggest a model for the regulation of porphyrin synthesis whereby the synthesis of porphyrins is coordinated with that of proteins.  相似文献   

7.
8.
Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp—a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.  相似文献   

9.
The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product''s biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ''s equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.  相似文献   

10.
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.  相似文献   

11.
12.
Summary Mutants of Saccharomyces cerevisiae, described as catalase and cytochromes deficient (Pachecka et al., 1974), have been analyzed for heme biosynthesis ability. Some enzymatic activities involved in protoheme synthesis were measured in acellular extracts, whereas whole cells were analyzed for cytochrome spectra and for possible accumulation of porphyrin synthesis intermediates. A good correlation was found between these in vitro and in vivo studies. Results show that two mutants were impaired in 5-aminolevulinate synthesis, two mutants were devoid of uroporphyrinogen I synthetase activity and one mutant presented defects in coproporphyrinogen III oxidase activity.  相似文献   

13.
Background: Cow's milk contain phytoestrogens especially equol depending on the composition of the feed ration. However, it is unknown whether milk differing in equol exhibits different estrogenicity in model systems and thereby potentially in humans as milk consumers. Methods: The estrogenicity of high and low equol milk (HEM and LEM, respectively) and purified equol was investigated in immature female mice including mRNA expression of six estrogen-sensitive genes in uterine tissue. Extracts of HEM and LEM were also tested for estrogenicity in vitro in an estrogen receptor (ER) reporter gene assay with MVLN cells. Results: The total content of phytoestrogens was approximately 10 times higher in HEM compared with LEM, but levels of endogenous milk estrone and 17β-estradiol were similar in the two milk types (503–566 and 60–64.6 pg/ml, respectively). There was no difference in uterine weight between mice receiving LEM and HEM, and no difference from controls. Equol (50 times the concentration in HEM) was not uterotrophic. The ERβ mRNA expression was down-regulated in the uteri of HEM mice compared with LEM and controls, but there was no difference between milk types for any of the other genes. Extracts of HEM showed a higher estrogenicity than extracts of LEM in MVLN cells, and there was a dose-dependent increase in estrogenicity by equol. Conclusion: The higher in vitro estrogenicity of HEM was not reflected as a higher uterine weight in vivo although the down-regulation of ERβ in uterine tissue of HEM mice could suggest some estrogenic activity of HEM at the gene expression level.  相似文献   

14.
Achieving long-term expression of a therapeutic gene in a given hematopoietic lineage remains an important goal of gene therapy. Congenital erythropoietic porphyria (CEP) is a severe autosomal-recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We used a recently obtained murine model to check the feasibility of gene therapy in this disease. Lentivirus-mediated transfer of the human UROS cDNA into hematopoietic stem cells (HSCs) from Urosmut248 mice resulted in a complete and long-term enzymatic, metabolic, and phenotypic correction of the disease, favored by a survival advantage of corrected red blood cells. These results demonstrate that the cure of this mouse model of CEP at a moderate transduction level supports the proof of concept of a gene therapy in this disease by transplantation of genetically modified hematopoietic stem cells.  相似文献   

15.
Treatment of cultured chick embryo hepatocytes with phenobarbital, polychlorinated biphenyl compounds and 2,3,7,8-tetrachlorodibenzo-p-dioxin resulted in increased delta-aminolaevulinate synthase and decreased uroporphyrinogen decarboxylase activities and porphyrin accumulation; uroporphyrin and heptacarboxyporphyrin predominated. Iron had no effect on these changes. Simultaneous treatment of cultures with dioxin and phenobarbital produced a synergistic response in delta-aminolaevulinate synthase induction, uroporphyrinogen decarboxylase inhibition and porphyrin accumulation. These data suggest that an inhibitor of uroporphyrinogen decarboxylase may be generated in the liver from polychlorinated biphenyl compounds or dioxin by metabolic activation. Additionally these findings bear on the postulated role of these and related chemicals in determining the low levels of uroporphyrinogen decarboxylase activity in porphyria cutanea tarda patients.  相似文献   

16.
17.
Gene targeting is a powerful tool for analyzing gene function. Recently, new technology for gene targeting using engineered zinc-finger nucleases (ZFNs) has been described in fish species. However, it has not yet been widely used for cold water and slow developing species, such as Salmonidae. Here, we present the results of successful ZFN-mediated disruption of the sex-determining gene sdY (sexually dimorphic on the Y chromosome) in rainbow trout (Oncorhynchus mykiss). Three pairs of ZFN mRNA targeted to different regions of the sdY gene were injected into fertilized rainbow trout eggs. Sperm from 1-year-old male founders (parental generation one or P1) carrying a ZFN-induced mutation in their germline were then used to produce F1 non-mosaic animals. In these F1 populations, we characterized 14 different mutations in the sdY gene, including one mutation leading to the deletion of leucine 43 (L43) and 13 mutations at other target sites that had different effects on the SdY protein, i.e., amino acid insertions, deletions, and frameshift mutations producing premature stop codons in the mRNA. The gonadal phenotype analysis of the F1-mutated animals revealed that the single L43 amino acid deletion did not lead to a male-to-female sex reversal, but all other mutations induced a clear ovarian phenotype. These results show that targeted gene disruption using ZFN is efficient in rainbow trout but depends on the ZFN design. We also characterized new sdY mutations resulting in male-to-female sex reversal, and we conclude that L43 seems dispensable for SdY function.  相似文献   

18.
19.
Fifty-five haemin-requiring mutants were isolated from haemin-permeable mutants. According to their growth responses to haem precursors and their patterns of porphyrin accumulation, the 55 mutants fell into three groups which were judged to have defects in 5-aminolaevulinate dehydratase, ferrochelatase, and uroporphyrinogen III cosynthase or uroporphyrinogen decarboxylase. In mutants of the group deficient in 5-aminolaevulinate dehydratase, the mutations were adjacent to lac, and evidence is presented that the mutations were in hemB and were commonly deletions extending into proC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号