首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
矿质养分输入对森林生物固氮的影响   总被引:1,自引:0,他引:1  
郑棉海  陈浩  朱晓敏  毛庆功  莫江明 《生态学报》2015,35(24):7941-7954
生物固氮是森林生态系统重要的氮素来源,并且在全球氮循环中占有重要的地位。近代以来,因人类活动加剧而导致氮沉降的增加以及其它矿质养分元素(如磷、钼、铁等)输入的改变已成为影响森林生态系统生物固氮的重要因素之一,并引起了学术界的普遍关注。综述了国内外关于森林生物固氮对矿质养分输入的响应及机理。主要内容包括:(1)森林生物固氮的概念及主要的测定方法;(2)矿质养分输入对森林生物固氮的影响。整体上讲,氮素输入抑制了森林生物固氮,磷和其他营养元素输入则表现为促进作用。氮和磷、磷和微量元素同时添加均提高了森林的固氮量;(3)矿质养分改变森林生物固氮的机理。包括生物作用机制(如改变地表层固氮菌的数量或群落丰度、改变结瘤植物的根瘤生物量和附生植物的丰度或盖度)和环境作用机制(如引起土壤酸化、改变碳源物质的含量);(4)探讨了矿质养分输入对森林生物固氮影响研究中所存在的问题,并对未来该领域的研究提出建议。  相似文献   

2.
外来植物的引种和入侵已成为一个全球性的重要问题.许多外来植物不仅可以改变陆地生态系统的氮输入、输出,而且还可以通过改变氮素吸收、再利用,凋落物质量,土壤环境,土壤生物等因子影响陆地生态系统内都氮循环.在概述陆地生态系统氮循环基础上,系统综述了外来植物对陆地生态系统氮循环的影响方式和途径以及可能造成的生态后果,并对将来研究方向进行了展望:应更多考虑外来植物影响机制的复杂性、不同养分元素循环的相互作用和新技术手段的应用.  相似文献   

3.
陆地生态系统氮沉降增加的生态效应   总被引:21,自引:0,他引:21       下载免费PDF全文
 人类活动在全球范围内极大地改变着氮素从大气向陆地生态系统输入的方式和速率,人为固定的氮素正在不断积累,并对生态系统的结构和功 能产生显著影响。该文从以下几个方面综述了大气氮沉降增加对陆地生态系统的影响:1)氮输入增加可能影响植物生产力和生态系统碳蓄积能 力,生态系统响应的方向和程度取决于系统的初始氮状况(氮限制或氮饱和)以及当地的植被和土壤特征;2)持续氮输入有可能改变土壤氮循环 过程,降低土壤固持氮的能力,甚至导致土壤酸化、盐基离子损耗,进而影响到土壤有机碳的分解;3)高的氮沉降速率和持续氮输入都可能加 速含氮痕量气体的释放,但其影响程度受生态系统初始状态的影响(例如磷限制和氮限制);4)氮沉降增加会影响生态系统的物种丰富度、植物 群落结构和动态,促进森林扩张,改变菌根真菌的物种多样性;5)持续氮输入带来的植物群落结构和植物生理特征的变化可能影响昆虫取食特 性,进而通过食物链改变生态系统的营养结构;6) 氮沉降增加对生态系统的影响并不是孤立存在的,它与CO2浓度升高和O3浓度变化有协同作 用,但难以从其协同效应中区分出各自的影响。最后,该文总结了我国的氮沉降研究现状,并对今后的研究前景提出了展望。  相似文献   

4.
氮磷共限制青藏高原高寒草甸生态系统碳吸收   总被引:1,自引:0,他引:1  
随着人类活动加剧,青藏高原高寒草地面临外来资源输入的威胁,而外源资源输入如氮、磷、钾(N、P、K)及其交互作用如何影响高寒草地生态系统碳循环尚不明确.本研究在藏北高寒草甸进行了连续3年N、P、K元素交互的添加试验,测定群落盖度和生态系统碳交换等数据,旨在阐明资源添加对高寒草甸生态系统碳交换过程的影响.结果 表明:在植物...  相似文献   

5.
磷影响陆地生态系统碳循环过程及模型表达方法   总被引:1,自引:0,他引:1       下载免费PDF全文
全球气候变暖已大大改变了陆地植物碳吸收能力, 提高了全球植被净初级生产力。随着气候变暖的加剧, 磷对植物生长的限制作用逐渐显现且不断增强, 磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态系统碳循环的相关机理以及模型对相关过程的定量化表达方法。综合对比分析了国际上的Carnegie- Ames-Stanford Approach-CNP (CASA-CNP)、Community Land Model-CNP (CLM-CNP)和Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg-CNP (JSBACH-CNP)等碳、氮、磷耦合模型中磷影响植物光合作用与同化物分配过程、植物对磷的吸收过程、土壤中磷的转化过程以及生态系统磷输入与输出等过程的相关数学表达方法, 指出了模型算法的局限与不确定性以及未来模型发展与改进的方向。同时综合对比分析了CASA-CNP、CLM-CNP、JSBACH-CNP模型的基本特征, 总结了磷循环模型的建模方法, 为未来开展磷影响陆地生态系统碳循环的模型模拟研究提供了借鉴方法与参考思路。  相似文献   

6.
氮沉降对森林生态系统磷循环产生了不可忽视的影响, 尤其是加剧了植物生长的磷限制, 从而使得氮沉降背景下植物磷含量变化备受关注。该文综述了氮添加对森林植物磷含量的影响, 认为氮添加通过促进土壤磷酸酶活性进而提高土壤有效磷含量, 有利于植物的磷吸收并增加植物磷含量。同时, 森林植物磷含量对氮添加的响应还受物种、生活型以及施氮时间长短等因素的影响。基于森林植物磷含量对氮添加响应的差异性, 该文进一步探讨氮富集背景下森林植物磷含量变化的可能机制: 1)外源氮输入通过改变土壤中有效磷含量从而对植物磷的来源产生影响; 2)通过影响植物的根系分泌物、菌根共生和根系形态结构等进而影响植物的磷吸收能力; 3)通过影响植物的磷养分再分配、磷养分重吸收对植物磷利用效率产生影响。综上所述, 外源氮输入使植物磷含量发生改变, 首要原因是土壤有效磷含量的改变, 其次是植物磷吸收能力和磷利用效率的改变起调控作用。  相似文献   

7.
全球气候变暖已大大改变了陆地植物碳吸收能力,提高了全球植被净初级生产力。随着气候变暖的加剧,磷对植物生长的限制作用逐渐显现且不断增强,磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态系统碳循环的相关机理以及模型对相关过程的定量化表达方法。综合对比分析了国际上的CarnegieAmes-Stanford Approach-CNP (CASA-CNP)、Community Land Model-CNP (CLM-CNP)和Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg-CNP (JSBACH-CNP)等碳、氮、磷耦合模型中磷影响植物光合作用与同化物分配过程、植物对磷的吸收过程、土壤中磷的转化过程以及生态系统磷输入与输出等过程的相关数学表达方法,指出了模型算法的局限与不确定性以及未来模型发展与改进的方向。同时综合对比分析了CASA-CNP、CLM-CNP、JSBACH-CNP模型的基本特征,总结了磷循环模型的建模方法,为未来开展磷影响陆地生态系统碳循环的模型模拟研究提供了借鉴方法与参考思路。  相似文献   

8.
氮沉降对森林生态系统磷循环产生了不可忽视的影响,尤其是加剧了植物生长的磷限制,从而使得氮沉降背景下植物磷含量变化备受关注。该文综述了氮添加对森林植物磷含量的影响,认为氮添加通过促进土壤磷酸酶活性进而提高土壤有效磷含量,有利于植物的磷吸收并增加植物磷含量。同时,森林植物磷含量对氮添加的响应还受物种、生活型以及施氮时间长短等因素的影响。基于森林植物磷含量对氮添加响应的差异性,该文进一步探讨氮富集背景下森林植物磷含量变化的可能机制:1)外源氮输入通过改变土壤中有效磷含量从而对植物磷的来源产生影响; 2)通过影响植物的根系分泌物、菌根共生和根系形态结构等进而影响植物的磷吸收能力;3)通过影响植物的磷养分再分配、磷养分重吸收对植物磷利用效率产生影响。综上所述,外源氮输入使植物磷含量发生改变,首要原因是土壤有效磷含量的改变,其次是植物磷吸收能力和磷利用效率的改变起调控作用。  相似文献   

9.
氮沉降对森林土壤磷循环的影响   总被引:8,自引:0,他引:8  
陈美领  陈浩  毛庆功  朱晓敏  莫江明 《生态学报》2016,36(16):4965-4976
磷是生物体必需的大量元素之一,也是许多生态系统的主要限制因子。近年来,大气氮沉降日益加剧,已对森林生态系统磷循环产生了不可忽视的影响。关于氮沉降对生态系统磷循环的影响已开展了一系列的研究,然而尚缺少对其整体的认识。因此,通过收集国内外已发表的相关文章,从以下五个方面综述氮沉降对森林生态系统土壤磷循环的影响及其机理:1)阐述了森林生态系统土壤磷循环的概念;2)介绍了氮沉降对森林土壤磷循环影响的研究方法,包括长期定位模拟氮沉降法、自然氮沉降梯度法和同位素示踪法等;3)概述了氮沉降对森林生态系统土壤磷循环的影响。目前的研究结论趋向于认为长期氮沉降使森林土壤磷循环速率加快。长期氮输入易于使土壤中可溶性磷向非活性磷酸盐库迁移而难以被利用。因此,为了满足需求,土壤磷酸酶活性将增加以加速有机磷的矿化,从而加速磷素在土壤-植物-微生物之间的周转。4)探讨了氮沉降影响森林土壤磷循环的机制。氮沉降可通过改变土壤有机质的性质、微生物群落组成、磷酸酶活性以及阳离子的流动性等途径影响森林土壤磷循环;5)指出了当前研究存在的问题及未来的研究方向。  相似文献   

10.
陆地生态系统植物的氮源及氮素吸收   总被引:9,自引:0,他引:9  
氮是植物生长发育所必需的营养元素,也是其主要的限制因子之一.陆地生态系统植物所需氮的来源及植物对氮素的吸收利用均受控于其种类和生长环境.环境条件的改变,一方面可能改变植物生长区原有氮的形态、浓度、赋存方式等,从而改变氮对植物的供给状况;另一方面可能引起植物生长区土壤质量、水分利用状况、光照等的改变,从而产生耦合现象,直接影响植物的生理生态特性,使植物对氮素的吸收利用发生改变,导致植物生长区的种群类型及物种多样性发生改变,并直接影响到生态系统的功能及演替.本文主要对陆地生态系统中高等植物生长发育所需氮素的来源及植物对氮素吸收利用过程中的影响因素进行了综述和讨论,并结合国内外在该领域的研究现状对其研究前景进行了展望.  相似文献   

11.
内蒙古典型草原4种优势植物凋落物的混合分解研究   总被引:2,自引:0,他引:2       下载免费PDF全文
混合凋落物的研究对预测生态系统群落水平的分解以及相应的养分释放和进一步的循环等生态学过程具有重要意义。该研究使用网袋法, 对克氏针茅(Stipa krylovii)、糙叶黄芪(Astragalus scaberrimus)、星毛委陵菜(Potentilla acaulis)和羊草(Leymus chinensis) 4种凋落物单种及其混合物的分解速率及分解过程中的养分动态进行了野外实验研究, 以探讨凋落物多样性对内蒙古典型草原生态系统分解速率和过程的影响。通过对凋落物分解速率和养分含量变化历时1年的实际测定, 得到下列研究结果(1)分解341天后, 单种凋落物的剩余重量与初始氮(N)含量呈显著负相关关系(p < 0.001, r = - 0.979)。混合凋落物中, 糙叶黄芪-星毛委陵菜组合剩余重量的实测值比期望值高7.5%, 表明凋落物混合具有显著的正效应, 但在其他几种组合中没有发现显著的凋落物混合效应; (2)在分解初期的N释放阶段, 克氏针茅-糙叶黄芪和克氏针茅-羊草组合的实测N剩余率分别比期望值低4.7%和10.0%, 表明混合凋落物对初期N元素释放具有显著的负效应。不同凋落物混合组合的磷(P)释放或累积在不同分解时期都得到了一定程度的促进, 尤其是星毛委陵菜-克氏针茅、克氏针茅-羊草和克氏针茅-糙叶黄芪组合, 它们在分解前期、中期和后期, 实测P剩余率与期望值的差异分别为31.1%、23.1%和21.8%。研究结果表明, 在内蒙古典型草原生态系统, 多数混合凋落物对分解速率不产生显著的混合效应; 相反, 大多数混合凋落物对分解过程中的养分动态, 尤其是P元素, 具有显著的混合效应, 而混合效应的方向(正或负)可能是十分复杂的。  相似文献   

12.
Pan Q  Bai Y  Wu J  Han X 《PloS one》2011,6(5):e20078

Background

Numerous studies have shown that nitrogen (N) deposition decreases biodiversity in terrestrial ecosystems. To explain the N-induced species loss, three functionally based hypotheses have been proposed: the aboveground competition hypothesis, the belowground competition hypothesis, and the total competition hypothesis. However, none of them is supported sufficiently by field experiments. A main challenge to testing these hypotheses is to ascertain the role of shoot and root competition in controlling plant responses to N enrichment. Simultaneously examining both aboveground and belowground responses in natural ecosystems is logistically complex, and has rarely been done.

Methodology/Principal Findings

In a two-year N addition experiment conducted in a natural grassland ecosystem, we investigated both above- and belowground responses of plants at the individual, species, and community levels. Plants differed significantly in their responses to N addition across the different organizational levels. The community-level species loss was mainly due to the loss of perennial grasses and forbs, while the relative abundance of plant species was dependent mainly on individual-level responses. Plasticity in biomass allocation was much smaller within a species than between species, providing a biological basis for explaining the functionally based species loss. All species increased biomass allocation to aboveground parts, but species with high belowground allocations were replaced by those with high aboveground allocations, indicating that the increased aboveground competition was the key process responsible for the observed diversity loss after N addition in this grassland ecosystem.

Conclusions/Significance

Our findings shed new light on the validity of the three competing hypotheses concerning species loss in response to N enrichment. They also have important implications for predicting the future impacts of N deposition on the structure and functioning of terrestrial ecosystems. In addition, we have developed a new technique for ascertaining the roles of aboveground and belowground competition in determining plant responses to N fertilization.  相似文献   

13.
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming‐induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance‐weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming‐induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming‐related nutrient availability may impact ecosystems differently than single‐level fertilization experiments.  相似文献   

14.
Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption‐mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.  相似文献   

15.
陆地生态系统植被氮磷化学计量研究进展   总被引:17,自引:0,他引:17       下载免费PDF全文
刘超  王洋  王楠  王根轩 《植物生态学报》2012,36(11):1205-1216
因化学功能的耦合和元素的不可替代性, 植物对N、P的需求和利用存在严格的比例。植物N、P化学计量在不同功能群、生长地区、生长季、器官之间以及环境梯度下存在明显的变化规律。多数研究从N、P浓度、N:P及N、P间异速指数等角度分析了植物化学计量变化规律, 并探讨其在全球范围内的具体数值。为增进对植物响应全球变化的理解, 该文综述了N、P化学计量的影响因素及其机理的最新研究进展, 并指出未来拟重点研究的方向。  相似文献   

16.
Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.  相似文献   

17.
Aim Although many studies support the prevailing paradigm of nitrogen (N)‐driven biodiversity loss, some have argued that phosphorus (P) may be the main culprit. This questions the generality of the global threat through N enrichment. The major objective here was to quantify the relative importance of soil N and P in explaining patterns of plant species richness, under different levels of N and P limitation. Location North‐western Europe. Methods We collected soil, productivity and plant species data from 132 semi‐natural grasslands located along a gradient of nutrient availability and atmospheric N deposition. We used linear mixed models to investigate the relation between soil nutrients, acidity, limitation and productivity on one side, and indices for plant species richness on the other. Results Mixed models explained between 38 and 50% of the total variation in species numbers, forbs and endangered species. Soil P was significantly negatively related to total species number, forbs and endangered species. Soil N was only significantly negatively related to number of forbs and endangered species. Compared with soil P, the explained variation attributed to soil N was between five‐ and twenty‐fold lower. P‐limited grasslands exhibited higher species richness, numbers of forbs and endangered species. Species richness and number of forbs decreased with lower soil acidity. N deposition was negatively related to the number of forbs and endangered species, as well as to soil acidity. Productivity was weakly positively related to soil P and negatively to species and forb numbers. We found no interaction factors between the explanatory variables. Main conclusions P enrichment can present a greater threat to biodiversity than N enrichment in at least some terrestrial ecosystems. However, as N‐ and P‐driven species loss appeared independent, our results suggest that simultaneously reducing N and P inputs is a prerequisite for maintaining maximum plant diversity.  相似文献   

18.
In the past two decades, a large number of studies have investigated the relationship between biodiversity and ecosystem functioning, most of which focussed on a limited set of ecosystem variables. The Jena Experiment was set up in 2002 to investigate the effects of plant diversity on element cycling and trophic interactions, using a multi-disciplinary approach. Here, we review the results of 15 years of research in the Jena Experiment, focussing on the effects of manipulating plant species richness and plant functional richness. With more than 85,000 measures taken from the plant diversity plots, the Jena Experiment has allowed answering fundamental questions important for functional biodiversity research.First, the question was how general the effect of plant species richness is, regarding the many different processes that take place in an ecosystem. About 45% of different types of ecosystem processes measured in the ‘main experiment’, where plant species richness ranged from 1 to 60 species, were significantly affected by plant species richness, providing strong support for the view that biodiversity is a significant driver of ecosystem functioning. Many measures were not saturating at the 60-species level, but increased linearly with the logarithm of species richness. There was, however, great variability in the strength of response among different processes. One striking pattern was that many processes, in particular belowground processes, took several years to respond to the manipulation of plant species richness, showing that biodiversity experiments have to be long-term, to distinguish trends from transitory patterns. In addition, the results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability. This highlights the need to revisit diversity–stability theory.Second, we explored whether individual plant species or individual plant functional groups, or biodiversity itself is more important for ecosystem functioning, in particular biomass production. We found strong effects of individual species and plant functional groups on biomass production, yet these effects mostly occurred in addition to, but not instead of, effects of plant species richness.Third, the Jena Experiment assessed the effect of diversity on multitrophic interactions. The diversity of most organisms responded positively to increases in plant species richness, and the effect was stronger for above- than for belowground organisms, and stronger for herbivores than for carnivores or detritivores. Thus, diversity begets diversity. In addition, the effect on organismic diversity was stronger than the effect on species abundances.Fourth, the Jena Experiment aimed to assess the effect of diversity on N, P and C cycling and the water balance of the plots, separating between element input into the ecosystem, element turnover, element stocks, and output from the ecosystem. While inputs were generally less affected by plant species richness, measures of element stocks, turnover and output were often positively affected by plant diversity, e.g. carbon storage strongly increased with increasing plant species richness. Variables of the N cycle responded less strongly to plant species richness than variables of the C cycle.Fifth, plant traits are often used to unravel mechanisms underlying the biodiversity–ecosystem functioning relationship. In the Jena Experiment, most investigated plant traits, both above- and belowground, were plastic and trait expression depended on plant diversity in a complex way, suggesting limitation to using database traits for linking plant traits to particular functions.Sixth, plant diversity effects on ecosystem processes are often caused by plant diversity effects on species interactions. Analyses in the Jena Experiment including structural equation modelling suggest complex interactions that changed with diversity, e.g. soil carbon storage and greenhouse gas emission were affected by changes in the composition and activity of the belowground microbial community. Manipulation experiments, in which particular organisms, e.g. belowground invertebrates, were excluded from plots in split-plot experiments, supported the important role of the biotic component for element and water fluxes.Seventh, the Jena Experiment aimed to put the results into the context of agricultural practices in managed grasslands. The effect of increasing plant species richness from 1 to 16 species on plant biomass was, in absolute terms, as strong as the effect of a more intensive grassland management, using fertiliser and increasing mowing frequency. Potential bioenergy production from high-diversity plots was similar to that of conventionally used energy crops. These results suggest that diverse ‘High Nature Value Grasslands’ are multifunctional and can deliver a range of ecosystem services including production-related services.A final task was to assess the importance of potential artefacts in biodiversity–ecosystem functioning relationships, caused by the weeding of the plant community to maintain plant species composition. While the effort (in hours) needed to weed a plot was often negatively related to plant species richness, species richness still affected the majority of ecosystem variables. Weeding also did not negatively affect monoculture performance; rather, monocultures deteriorated over time for a number of biological reasons, as shown in plant-soil feedback experiments.To summarize, the Jena Experiment has allowed for a comprehensive analysis of the functional role of biodiversity in an ecosystem. A main challenge for future biodiversity research is to increase our mechanistic understanding of why the magnitude of biodiversity effects differs among processes and contexts. It is likely that there will be no simple answer. For example, among the multitude of mechanisms suggested to underlie the positive plant species richness effect on biomass, some have received limited support in the Jena Experiment, such as vertical root niche partitioning. However, others could not be rejected in targeted analyses. Thus, from the current results in the Jena Experiment, it seems likely that the positive biodiversity effect results from several mechanisms acting simultaneously in more diverse communities, such as reduced pathogen attack, the presence of more plant growth promoting organisms, less seed limitation, and increased trait differences leading to complementarity in resource uptake. Distinguishing between different mechanisms requires careful testing of competing hypotheses. Biodiversity research has matured such that predictive approaches testing particular mechanisms are now possible.  相似文献   

19.
Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of local extinction of rare plant species, encouragement of exotic plant species, disturbance of nutrient balance in plant organs, and increase of herbivory in plant communities. On the ecosystem scale, excess bioavailable N induces forest decline, disturbance of nutrient cycling within ecosystems, depending on vegetation, soil, land-use, and N-loading history. These Nr risks will increase in the Asian region, where impacts of Nr in natural terrestrial ecosystems have been scarcely studied. Whether much of the terrestrial ecosystems on a global level are in the sate of N saturation or not is still controversial, but the potential risks of excess Nr seem to be increasing. The fundamental ways to mitigate Nr risks are to reduce Nr production, prevent Nr translocation, and promote conversion of Nr to N2. Temporal, but promising actions against ecological N risks may include management of forests and riparian zones, and carbon addition in grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号