首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The structure of form I crystals of D-ribulose-1,5-diphosphate carboxylase.   总被引:1,自引:0,他引:1  
Single crystals of d-ribulose-1,5-diphosphate carboxylase from tobacco leaves, Nicotiana tabacum (variety Turkish Samsun), have been examined by X-ray diffraction, electron microscopy, and optical diffraction. Twelve molecules are loosely packed into a body-centered cubic unit cell, space group I4132 with cell dimension a = 383 Å. The asymmetric unit is one quarter of a molecule, and the minimum molecular symmetry is 222. This symmetry when combined with estimates of the two subunit masses and stoichiometry is compatible with a molecular structure of the composition L8S8 (L is large subunit, S is small). If all bonds between large and small subunits are equivalent, the true molecular symmetry is 422; this symmetry is consistent with molecular images in micrographs.  相似文献   

2.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The three-dimensional structure of quinoprotein methylamine dehydrogenase from Thiobacillus versutus has been determined at 2.25 A resolution by a combination of multiple isomorphous replacement, phase extension by solvent flattening and partial structure phasing using molecular dynamics refinement. In the resulting map, the polypeptide chain for both subunits could be followed and an X-ray sequence was established. The tetrameric enzyme, made up of two heavy (H) and two light (L) subunits, is a flat parallellepiped with overall dimensions of approximately 76 x 61 x 45 A. The H subunit, comprising 370 residues, is made up of two distinct segments: the first 31 residues form an extension which embraces one of the L subunits; the remaining residues are found in a disc-shaped domain. This domain is formed by a circular arrangement of seven topologically identical four-stranded antiparallel beta-sheets, with approximately 7-fold symmetry. In spite of distinct differences, this arrangement is reminiscent of the structure found in influenza virus neuraminidase. The L subunit consists of 121 residues, out of which 53 form a beta-sheet scaffold of a central three-stranded antiparallel sheet flanked by two shorter two-stranded antiparallel sheets. The remaining residues are found in segments of irregular structure. This subunit is stabilized by six disulphide bridges, plus two covalent bridges involving the quinone co-factor and residues 57 and 107 of this subunit. The active site is located in a channel at the interface region between the H and L subunits, and the electron density in this part of the molecule suggests that the co-factor of this enzyme is not pyrrolo quinoline quinone (PQQ) itself, but might be instead a precursor of PQQ.  相似文献   

4.
Crystals of a ribulose-1,5-bisphosphate carboxylase-oxygenase from Chromatium vinosum were obtained with the hanging-drop vapor diffusion technique, using polyethylene glycol 4000 as precipitant. The crystal belongs to the cubic system, space group I432, with unit cell dimension a = 245.9 A. An asymmetric unit includes one-quarter (L2S2, L: large subunit, S: small subunit) of a hexadecameric molecule (L8S8, 544,000 Mr), which is located on the crystallographic point symmetry 222 or 4. The crystal diffracts to at least 3.0 A resolution.  相似文献   

5.
The structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase was refined at a resolution of 2.0 A to an R-factor of 17.1%. The previous model (Chapman et al., 1988) was extensively rebuilt, and the small subunit was retraced. The refined model consists of residues 22-63 and 69-467 of the large subunit and the complete small subunit. A striking feature of the model is that several loops have very high B-factors, probably representing mobile regions of the molecule. An examination of the intersubunit contacts shows that the L8S8 hexadecamer is composed of four L2 dimers. The dominant contacts between these L2 dimers are formed by the small subunits. This suggests that the small subunits may be essential for maintaining the integrity of the L8S8 structure. The active site shows differences between the unactivated form and the quaternary complex. In particular, Lys334 has moved out of the active site by about 10A. This residue lies on loop 6 of the alpha beta barrel, which is a particularly mobile loop. The site of ribulose-1,5-bisphosphate carboxylase/oxygenase activation is well ordered in the absence of the carbamylation of Lys201 and Mg2+ binding. The residues are held poised by a network of hydrogen bonds. In the unactivated state, the active site is accessible to substrate binding.  相似文献   

6.
The structure of a C-terminal fragment of the ribosomal protein L7/L12 from Escherichia coli has been refined using crystallographic data to 1.7 A resolution. The R-value is 17.4%. Six residues at the N terminus are too disordered in the structure to be localized. These residues are probably part of a hinge in the complete L7/L12 molecule. The possibility that a 2-fold crystallographic axis is a molecular 2-fold axis is discussed. A patch of invariant residues on the surface of the dimer is probably involved in functional interactions with elongation factors.  相似文献   

7.
The crystal structure of the light-harvesting protein-pigment complex C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum has been determined by Patterson search techniques on the basis of the molecular model of C-phycocyanin from Mastigocladus laminosus. The crystal unit cell (space group P321) contains three (alpha beta)6 hexamers centred on the crystallographic triads. The hexamer at the origin of the unit cell exhibits crystallographic 32 point symmetry. The other two hexamers (independent of the former) show crystallographic 3-fold and local 2-fold symmetry. The 3-fold redundancy of the asymmetric unit of the crystal cell was used in the refinement process, which proceeded by cyclic averaging, model building and energy-restrained crystallographic refinement. Refinement was terminated with a conventional crystallographic R-value of 0.20 with data to 2.5 A resolution. The two independent hexamers of the unit cell are identical within the limits of error at all levels of aggregation. Two trimers, which closely resemble the M. laminosus C-phycocyanin, are aggregated head-to-head to form the hexamer. Both trimers fit complementarily and are held together by polar and ionic interactions. Conservation of the amino acid residues involved in protein-chromophore and intermonomer interactions suggests common structural features for all biliproteins. Most probably, the hexameric aggregation form present in the crystals is closely related to the discs of native phycobilisome rods. All tetrapyrrole chromophores are extended but with different geometries enforced by different protein surroundings. In particular, interactions of the propionic side-chains with arginine residues and of the pyrrole nitrogen atoms with aspartate residues define configuration and conformation of the chromophores. Relative chromophore distances and orientations have been determined and a preferential pathway for the energy transfer suggested. Accordingly, within a hexamer the absorbed energy is funneled to chromophore B84 and then transduced via B84 chromophores along the phycobilisome rods.  相似文献   

8.
Molecular structure of flavocytochrome b2 at 2.4 A resolution   总被引:16,自引:0,他引:16  
The crystal structure of flavocytochrome b2 has been solved at 3.0 A resolution by the method of multiple isomorphous replacement with anomalous scattering. Area detector data from native and two heavy-atom derivative crystals were used. The phases were refined by the B.C. Wang phase-filtering procedure utilizing the 67% (v/v) solvent content of the crystals. A molecular model was built first on a minimap and then on computer graphics from a combination of maps both averaged and not averaged about the molecular symmetry axis. The structure was extended to 2.4 A resolution using film data recorded at a synchrotron and refined by the Hendrickson-Konnert procedure. The molecule, a tetramer of Mr 230,000, is located on a crystallographic 2-fold axis and possesses local 4-fold symmetry. Each subunit is composed of two domains, one binding a heme and the other an FMN prosthetic group. In subunit 1, both the cystochrome and the flavin-binding domain are visible in the electron density map. In subunit 2 the cytochrome domain is disordered. However, in the latter, a molecule of pyruvate, the product of the enzymatic reaction, is bound at the active site. The cytochrome domain consists of residues 1 to 99 and is folded in a fashion similar to the homologous soluble fragment of cytochrome b5. The flavin binding domain contains a parallel beta 8 alpha 8 barrel structure and is composed of residues 100 to 486. The remaining 25 residues form a tail that wraps around the molecular 4-fold axis and is in contact with each remaining subunit. The FMN moiety, which is located at the C-terminal end of the central beta-barrel, is mostly sequestered from solvent; it forms hydrogen bond interactions with main- and side-chain atoms from six of the eight beta-strands. The interaction of Lys349 with atoms N-1 and O-2 of the flavin ring is probably responsible for stabilization of the anionic form of the flavin semiquinone and hydroquinone and enhancing the reactivity of atom N-5 toward sulfite. The binding of pyruvate at the active site in subunit 2 is stabilized by interaction of its carboxylate group with the side-chain atoms of Arg376 and Tyr143. Residues His373 and Tyr254 interact with the keto-oxygen atom and are involved in catalysis. In contrast, four water molecules occupy the substrate-binding site in subunit 1 and Tyr143 forms a hydrogen bond to the ordered heme propionate group. Otherwise the two flavin-binding domains are identical within experimental error.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Structures have been determined of Bacillus stearothermophilus "apo" and holo lactate dehydrogenase. The holo-enzyme had been co-crystallized with the activator fructose 1,6-bisphosphate. The "apo" lactate dehydrogenase structure was solved by use of the known apo-M4 dogfish lactate dehydrogenase molecule as a starting model. Phases were refined and extended from 4 A to 3 A resolution by means of the noncrystallographic molecular 222 symmetry. The R-factor was reduced to 28.7%, using 2.8 A resolution data, in a restrained least-squares refinement in which the molecular symmetry was imposed as a constraint. A low occupancy of coenzyme was found in each of the four subunits of the "apo"-enzyme. Further refinement proceeded with the isomorphous holo-enzyme from Bacillus stearothermophilus. After removing the noncrystallographic constraints, the R-factor dropped from 30.3% to a final value of 26.0% with a 0.019 A and 1.7 degrees r.m.s. deviation from idealized bond lengths and angles, respectively. Two sulfate ions per subunit were included in the final model of the "apo"-form--one at the substrate binding site and one close to the molecular P-axis near the location of the fructose 1,6-bisphosphate activator. The final model of the holo-enzyme incorporated two sulfate ions per subunit, one at the substrate binding site and another close to the R-axis. One nicotinamide adenine dinucleotide coenzyme molecule per subunit and two fructose 1,6-bisphosphate molecules per tetramer were also included. The phosphate positions of fructose 1,6-bisphosphate are close to the sulfate ion near the P-axis in the "apo" model. This structure represents the first reported refined model of an allosteric activated lactate dehydrogenase. The structure of the activated holo-enzyme showed far greater similarity to the ternary complex of dogfish M4 lactate dehydrogenase with nicotinamide adenine dinucleotide and oxamate than to apo-M4 dogfish lactate dehydrogenase. The conformations of nicotinamide adenine dinucleotide and fructose 1,6-bisphosphate were also analyzed.  相似文献   

10.
A new crystal form of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Nicotiana tabacum has been obtained at alkaline pH with polyethylene glycol 8000 in the presence of a non-ionic detergent, beta-octyl glucoside. The crystals are grown at room temperature by the hanging-drop vapor diffusion technique from a protein solution containing enzyme complexed with CO2, Mg2+, and the transition state analog 2-C-carboxy-D-arabinitol-1,5-bisphosphate. The crystals belong to the the space group P3(1)21 (or P3(2)21) with the cell parameters a = 204.6 A, and c = 117.4 A (1 A = 0.1 nm). The asymmetric unit contains half (L4S4: L, large subunit, 53,000 Mr; S, small subunit, 15,000 Mr) of a hexadecameric molecule (L8S8, 540,000 Mr). The crystals diffract to at least 2.6 A Bragg spacing and are suitable for X-ray structure determination.  相似文献   

11.
The structure of Xylose isomerase (X.I.) from Actinoplanes missouriensis has been solved to 2.8 Angstroms resolution. Phases were determined from a single Eu3+ derivative and from the noncrystallographic 222 symmetry of the tetrameric molecule. An atomic model was built and subjected to restrained crystallographic refinement. The resulting model is shown to be closely similar to the recently reported X.I.'s structures from three other bacterial sources. Each monomer is found to be composed of an eight-stranded alpha/beta "T.I.M." barrel forming an N-terminal domain of 328 residues followed by a large loop of 66 residues embracing an adjacent subunit. Analysis of intersubunit packing shows that the X.I. tetramer is an assembly of two tight dimers. The beta barrel fits a simple hyperboloid model as other T.I.M. barrels do. The active site, identified as the binding site for the inhibitor xylitol, is located at the carboxyl end of the beta strands in the barrel next to a pair of binding sites for Eu3+ ions, which are assumed to be sites for the divalent ions involved in catalysis. Active sites in the tetramer are oriented towards the interface between dimers. It is suggested that subunit interfaces might stabilize the active site region and this might explain the oligomeric nature of other alpha/beta barrel enzymes.  相似文献   

12.
The structures of methanol dehydrogenase (MEDH) from two closely related methylotrophic bacteria, Methylophilus methylotrophus and W3A1, have been determined at 2.6-A resolution. The molecule, a quinoprotein of molecular mass of about 138 kDa, contains two heavy (H) and two light (L) subunits of unknown sequence and two molecules of noncovalently associated pyrroloquinoline quinone. The two enzymes crystallize isomorphously in space group P2(1) with one H2L2 heterotetramer in the asymmetric unit. The electron density map of the M. methylophilus enzyme was obtained by multiple isomorphous replacement with anomalous scattering and improved by solvent leveling and electron density averaging. For model building, the amino acid sequence of MEDH from Paracoccus denitrificans for the H subunit and from Methylobacterium extorquens AM1 for the L subunit were used to represent the unknown amino acid sequence. At the present time, 579 and 57 amino acid residues for the large and small subunits, respectively, have been fitted into the map. The phases for MEDH from M. methylophilus were used directly to analyze the W3A1 structure, and both structures were refined to R-factors (where R = sigma[Fo-Fc[/sigma Fo) of 0.277 and 0.266, respectively. The L subunit contains a long alpha-helix and an extended N-terminal segment, both lying on the molecular surface of the H subunit. The H subunit contains eight antiparallel beta-sheets, each consisting of four strands arranged topologically like the letter W. The eight Ws are arranged circularly, forming the main disc-shaped body of the subunit, with some short helices and loops connecting the consecutive Ws, as well as some excursions within and between some of the Ws. The pyrroloquinoline quinone prosthetic group is located in the central channel of the large subunit near the surface of the molecule. The topology of the eight-W folding unit is similar to those of the six- and seven-W folding units previously reported for three other proteins, neuraminidase, methylamine dehydrogenase, and galactose oxidase.  相似文献   

13.
Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been developed. Based on concepts from the protein-protein docking field, it utilizes cryo-EM density maps to assemble molecular subunits at near atomic detail, starting from millions of initial subunit configurations. The search efficiency was further enhanced by recombining partial solutions, the inclusion of symmetry information, and refinement using a molecular force field. The approach was tested on the GroES-GroEL system, using an experimental cryo-EM map at 23.5 Å resolution, and on several smaller complexes. Inclusion of experimental information on the symmetry of the systems and the application of a new gradient vector matching algorithm allowed the efficient identification of docked assemblies in close agreement with experiment. Application to the GroES-GroEL complex resulted in a top ranked model with a deviation of 4.6 Å (and a 2.8 Å model within the top 10) from the GroES-GroEL crystal structure, a significant improvement over existing methods.  相似文献   

14.
5S rRNA-protein complex has been reconstituted from 5S rRNA and total protein of large (L) ribosomal subunit of Escherichia coli. The complex consists of 5S rRNA and 3 proteins only: L5, L18, L25. A water-soluble carbodiimide [N-cyclohexyl-N'-(2-morpholinoethyl)-carbodiimide-methyl-p-toluolsulp honate] cross-links L18 to 5S rRNA at pH 7.2 and L25 to 5S rRNA at pH 7.7. This pH-dependence of cross-linked proteins is a consequence of the difference in stability of the initial complex: the complex has all three proteins at pH 7.7 but L18 mainly at pH 7.2. It has been shown that L18 stimulates the chemical modification of U87 and U89 residues of 5S rRNA by carbodiimide. A model of L18-5S rRNA complex has been proposed.  相似文献   

15.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

16.
The structure of turnip crinkle virus has been determined at 3.2 A resolution, using the electron density of tomato bushy stunt virus as a starting point for phase refinement by non-crystallographic symmetry. The structures are very closely related, especially in the subunit arm and S domain, where only small insertions and deletions and small co-ordinate shifts relate one chain to another. The P domains, although quite similar in fold, are oriented somewhat differently with respect to the S domains. Understanding of the structure of turnip crinkle virus has been important for analyzing its assembly, as described in an accompanying paper.  相似文献   

17.
The three-dimensional structure analysis of crystalline fungal catalase from Penicillium vitale has been extended to 2.0 A resolution. The crystals belong to space group P3(1)21, with the unit cell parameters of a = b = 144.4 A and c = 133.8 A. The asymmetric unit contains half a tetrameric molecule of 222 symmetry. Each subunit is a single polypeptide chain of approximately 670 amino acid residues and binds one heme group. The amino acid sequence has been tentatively determined by computer graphics model building (using the FRODO system) and comparison with the known sequence of beef liver catalase. The atomic model has been refined by the Hendrickson & Konnert (1981) restrained least-squares program against 68,000 reflections between 5 A and 2 A resolution. The final R-factor is 0.31 after 24 refinement cycles. The secondary and tertiary structure of the catalase has been analyzed.  相似文献   

18.
The amino acid sequence of a methionine-rich 2S seed protein from sunflower (Helianthus annuus L.) and the sequence of a cDNA clone which codes for the entire primary translation product have been determined. The mature protein consists of a single polypeptide chain of 103 amino acids (molecular mass 12133 Da) which contains 16 residues of methionine and 8 residues of cysteine. The cDNA sequence established that the protein is synthesized as a precursor of 141 residues with a typical hydrophobic signal sequence of 25 residues followed by a further 13-residue hydrophobic pro-sequence which is presumably removed by post-translational cleavage. The sequence of the mature protein and that deduced from the cDNA were identical with no evidence of processing at the C-terminus. Comparison of the sunflower methionine-rich protein sequence with sequences of other seed 2S proteins from dicotyledons and monocotyledons showed limited but distinct sequence similarities; in particular the arrangement of the cysteine residues was conserved. The sunflower protein shows 34% identity with the methionine-rich Brazil nut 2S protein and the prepro regions of the precursors of these two proteins show about 50% identity. This similarity indicates that these methionine-rich 2S proteins have diverged as a subclass of the 2S superfamily of proteins which contain only 2-3% methionine. While the related 2S proteins from other dicotyledons are processed to a small and large subunit, the sunflower protein is not cleaved in this way.  相似文献   

19.
The structures of pig heart and chicken heart citrate synthase have been determined by multiple isomorphous replacement and restrained crystallographic refinement for two crystal forms, a tetragonal form at 2·7 Å and a monoclinic form at 1·7 Å resolution, with crystallographic R-values of 0·199 and 0·192, respectively. The structure determination involved a novel application of restrained crystallographic refinement, in that the refinement of incomplete models was necessary in order to completely determine the course of the polypeptide chain. The recently determined amino acid sequence (Bloxham et al., 1981) has been fitted to the models. The molecule has substantially different conformations in the two crystal forms, and there is evidence that a conformational change is required for enzymatic activity.The molecule is a dimer of identical subunits with 437 amino acid residues each. The conformation is all α-helix, with 40 helices per dimer packing tightly to form a globular molecule. Many of the helices are kinked in various ways or bent smoothly over a large angle. Several of the helices show an unusual antiparallel packing.Each subunit is clearly divided into a large and a small domain. The two crystal forms differ by the relative arrangement of the two domains. The tetragonal form represents an open configuration with a deep cleft between the two domains, the monoclinic form is closed. The structural change from the open to the closed form can be described by an 18 ° rotation of the small domain relative to the large domain.Crystallographic analyses were performed with the product citrate bound in both crystal forms, with coenzyme A (CoA) and a citryl-CoA analogue bound to the monoclinic form. These studies establish the CoA and the citrate binding sites, and the conformations of the two product molecules in atomic detail. The subunits are extensively interdigitated, with one subunit making significant contributions to both the citrate and the CoA binding sites of the other subunit. The adenine moiety of CoA is bound to the small domain, and the pantothenic arm is bound to the large domain. The citrate molecule is bound in a cleft between the large domain. The citrate molecule is bound in a cleft between the large and small domain, with the si carboxymethylene group facing the SH arm of coenzyme A. In the monoclinic form, the cysteamine part of CoA shields the bound citrate completely from the solution. Partial reaction of CoA-SH and aspartate 375 to form aspartyl-CoA, and citrate to form citryl-CoA may occur in the crystals. The conformation of CoA is compact, characterized by an internal hydrogen bond O-52 … N-7 and a tightlybound water molecule O-51 … HOH … O-20.  相似文献   

20.
沉淀剂类型对蛋白质晶体分子堆积的影响   总被引:3,自引:0,他引:3  
以不对称单位只有一个分子的牛胰核糖核酸酶和T4溶菌酶晶体为材料,着重研究了无机盐、有机溶剂和PEG三类不同的沉淀剂对晶体分子堆积的影响,经研究发现两种蛋白质中用无机盐做沉淀剂的晶型几乎都含有面积较大的二次轴对称接触面和较少的相邻分子数,同时其含有的参与接触的非极性残基集中分布于二次轴对称接触面,而盐键则在二次轴对称接触面上分布稀少。用有机溶剂作沉淀剂的晶型却含有面积较小的非二次轴对称接触面和较多的相含分子数,而参与接触的非极性残基和直键在各个非二次轴对称接触面上随机分布,用PEG作沉淀剂的晶型其分子堆积特征总体上类似于用有机溶剂作沉淀剂的晶型,但个别晶型具有与用无机盐做沉淀剂的晶型相似的分子堆积特征,以上结果提示,用三类沉淀剂得到的不同的分子堆积特征可能与三类沉淀剂不同的诱导结晶机理密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号