首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor dendrites of the antennal plaque organs of two species of fulgoroid insects contain 600 Å vesicles. These are concentrated in the distal vesicular region but also occur in the extreme tips of fine dendritic branches at the olfactory surface. At these points pore filaments run from the cuticular pores and are closely apposed to the dendritic membrane. Similar vesicles are found associated with Golgi bodies in the cell body and are also found more distally in multivesicular bodies. The multivesicular bodies appear to rupture and release vesicles. Vesicles also occur in the core of the dendrite cilium and it is assumed that they pass through the core and accumulate in the vesicular region. Similar vesicles appear to be a common feature in many, if not all, insect olfactory receptors.  相似文献   

2.
Antennae and maxillary palps of Drosophila melanogaster were studied with the electron microscope on serial sections of cryofixed specimens. The number of epidermal cells roughly equals the number of sensilla, except for regions where the latter are scarce or absent. Each epidermal cell forms about two non-innervated spinules, a prominent subcuticular space and a conspicuous basal labyrinth, suggesting a high rate of fluid transport through the sensory epithelium. The internal organization and fine structure of trichoid, intermediate and basiconic sensilla is very similar. Receptor cell somata are invested by thin glial sheaths extending distad to the inner dendritic segments. Further distally, the thecogen cell forms a sleeve around the dendrites, but an extracellular dendrite sheath is absent. At the base of the cuticular apparatus, the inner sensillum-lymph space around the ciliary and outer dendritic segments is confluent with the large outer sensillum-lymph space formed by the trichogen and tormogen cells. All three auxiliary cells exhibit many features of secretory and transport cells but extend only thin basal processes towards the haemolymph sinus. The bauplan and fine structure of coeloconic sensilla differs in the following aspects: (1) the ciliary segment of the dendrites is located deeper below the base of the cuticular apparatus than in the other sensillum types; (2) a prominent dendrite sheath is always present, separating inner and outer sensillum-lymph spaces completely; (3) the apical microlamellae of the auxiliary cells are more elaborate, but free sensillum-lymph spaces are almost absent; (4) there are always four not three auxiliary cells. Morphometric data are presented on the diameter of inner and outer dendritic segments and on the size of receptor cells, as well as of the receptor and auxiliary cell nuclei. The special fine structural features of Drosophila olfactory sensilla are discussed under the aspects of sensillar function and the localization of proteins relevant for stimulus transduction.  相似文献   

3.
Dependences of intracellular calcium signals on the concentrations of endogenous buffers (slow, parvalbumin, and fast, calmodulin) and a calcium-sensitive fluorophore (Fura-4F) were investigated on mathematical models of compartments of the reconstructed dendrite of a cerebellum Purkinje neuron. A Ca2+-storing cistern of the endoplasmic reticulum (ER) was present in the dendrite. Calcium signals developed when the neuron generated responses to single synaptic excitation or intrinsic non-periodical impulse activity. The dynamics of the buffer binding capacity were also studied; this capacity was characterized by the ratio of concentrations of bound and free calcium or concentration increments of the latter. The plasma membrane of the dendrite possessed ion channels (including those of synaptic currents) and the calcium pump characteristic of the mentioned neuron. Model equations took into account Ca2+ exchange between the cytosol, buffers, ER, and extracellular medium, as well as diffusion processes. The ER membrane contained the calcium pump, leakage channels, and channels of calcium-induced release and inositol-3-phosphate-dependent releases of Ca2+. The ER cistern occupied 1 to 36% of the intracellular volume. Upon different occupancies of the dendrite by the organelle store, an increase in the concentration of the slow buffer insignificantly decreased the cytosolic Ca2+ transients with no effect on their shape. The fast buffer and the dye with similar kinetic properties caused slowing down of the rising phase of Ca2+ transients, decrease in the early component, and increase in the late component of the latter. In the case of nonperiodical and asynchronous intrinsic oscillations of the membrane potential typical of asymmetrical active dendrites, the slow buffer, like the ER store, bound more Ca2+ in compartments of compatible sizes and fillings by the organelles belonging to those metrically asymmetrical branches, which, on average, stayed longer in the state of high depolarization; this provided a greater Ca2+ entry from outside. Hence, the pattern of structural/functional organization of calcium signalization in the dendrites can be complemented in the part of both the direct influences of local microgeometry of the dendrite and the indirect ones related to global macrogeometry of the dendritic arborization.  相似文献   

4.
A hitherto unknown sensillum type, the “intracuticular sensillum” was identified on the dactyls of the walking legs of the shore crab, Carcinus maenas. Each sensillum is innervated by two sensory cells with dendrites of “scolopidial” (type I) organization. The ciliary segment of the dendrite is 5–6 μm long and contains A-tubules with an electron-dense core and dynein arm-like protuberances; the terminal segment is characterized by densely packed microtubules. The outer dendritic segments pass through the endo- and exocuticle enclosed in a dendritic sheath and a cuticulax tube (canal), which is suspended inside a slit-shaped cavity by cuticular lamellae. The dendrites and the cavity terminate in a cupola-shaped invagination of the epicuticle. External cuticular structures are lacking. Three inner and four to six outer enveloping cells are associated with each intracuticular sensillum. The innermost enveloping cell contains a large scolopale that is connected to the ciliary rootlets inside the inner dendritic segments by desmosomes. Scolopale rods are present in enveloping cell 2. Since type I dendrites and a scolopale are regarded as modality-specific structures of mechanoreceptors, and since no supracuticular endorgan is present, the intracuticular sensilla likely are sensitive to cuticular strains. The intracuticular sensilla should be regarded as analogous to insect campaniform sensilla and arachnid slit sense organs.  相似文献   

5.
The fine structure of coeloconic sensilla of Bombyx mori was studied in cryofixed specimens. These sensilla belong to the category of double-walled wall-pore sensilla. The pegs are approximately 10 mum long, located in pits on the dorsal side of the antennal branches, and longitudinally grooved in their distal half (grooved surface approximately 30 mum(2)). The central lumen contains the outer dendritic segments of usually five receptor cells, and is surrounded by up to 15 partially fused cuticular fingers. The peripheral lumina of these cuticular fingers are filled with material resembling wax-canal filaments. Radial spoke channels ( approximately 600 per peg), each 10-20 nm wide, connect the central lumen with the longitudinal groove channels. Groove and spoke channels are assumed to mediate the transport of odorant molecules from the outer epicuticular surface layers to the sensory dendrites. Thus the double-walled wall-pore sensilla represent a bauplan essentially different from single-walled wall-pore sensilla; the reason, however, why the two types are found together throughout the insect orders remains enigmatic. Other peculiar features of the coeloconic sensilla of the silkmoth are invaginations of the outer dendritic segments and direct contacts between the receptor cell somata. The latter may be the structural correlate to electrophysiological observations indicative of peripheral interaction between the receptor neurons. All three auxiliary cells have elaborately folded apical plasma membranes studded with portasomes and associated with an abundance of mitochondria; basally they often contact tracheal branches. As compared to the auxiliary cells of the single-walled olfactory sensilla of the same species, all the mentioned features are much more prominent and hint to a higher ion pumping activity at the border to the sensillum-lymph cavities.  相似文献   

6.
Sensilla on the antenna of the bed bug, Cimex lectularius, were studied with the scanning and transmission electron microscope. Those which display a tubular body in the dendrite ending are presumed to have a mechanoreceptor function (bristles of type A, flat plate of type B). Bristles of type A1 contain additional dendrites which terminate at the tip of the bristle and may be gustatory receptors. Sensilla with pores in the hair wall are supposed to have an offactory, humidity and/or temperature receptor function (pegs and hairs of types C, D, E). Hairs of type E contain receptors for the alarm pheromones of the bed bug. Special attention has been paid to the pore structures and epicuticular layers of these sensilla. Possible differences in stimulus conduction are discussed between (i) sensilla with a simple wall and pores with pore tubules (types D and E) and (ii) the ribbed pegs (type C), which have a complex wall structure and spoke channels. The immersed cones of type F have a peculiar innervation, which has not been described previously. Two dendrites are held closely together by a third flat dendrite which wraps around them in the region of the outer segment. Coupling structures were found between the central dendrites, and between these and the third enveloping dendrite. Possible functions of this unique innervation are discussed. The dendrites innervating type D are grouped in three to eight bundles by multiple sheaths. The term thecogen cell is introduced to denote the innermost of the three sheath cells of a sensillum (the outer being the tormogen and the trichogen cell) which builds the dendrite sheath during ontogeny. Comparative morphometry revealed type-specific differences in the length and diameter of the dendrites. Some axons were found to lack any glial or perineurial sheath. Microorganisms were observed in the antennal tissue of several animals.  相似文献   

7.
In the model of a cerebellar Purkinje neuron with reconstructed active dendrites, we investigated the impact of the ratio between volumes of the endoplasmic reticulum (organellar calcium store) and cytosol on the Ca2+ dynamics in asymmetrical parts of the dendritic arborization during generation of different structure-dependent patterns of bursting activity. Tonic synaptic excitation homogeneously distributed over the dendrites (a spatially homogeneous stationary input signal) caused spatially heterogeneous variations of the dendritic membrane potential (MP) accompanied by periodical or nonperiodical bursts of action potentials at the cell output. The MP waveforms recorded from the segments of asymmetrical dendrites were then applied to the membrane of selected dendrite segments as command voltages in a dynamic clamp mode. In these segments, the relative size of the stores was varied. This provided equal to each other local calcium currents and influxes into the cytosol of the segment differently filled with the organellar store. Regardless of the impulse pattern, microgeometry of the segment and the store modulated calcium transients exactly in the same way as in previous studies of electrical and concentration responses to local phasic synaptic excitation of the modeled neuron. Peak values of depolarization-induced elevations of the cytosolic Ca2+ concentration increased with the portion of the intracellular volume occupied by the store. The most important factor defining this dependence was the ratio of the membrane area vs the organelle-free cytosol volume of the dendritic segment. Concentrations of Са2+ deposited in equal-sized segments of asymmetrical parts of the dendritic arborization where asynchronous unequal variations of the MP were observed during generation of nonperiodical bursting at the output demonstrated considerable specificity. A greater amount of calcium was deposited in the segments staying, on average, in a high-depolarization state for a longer time (this intensified activation of calcium channels and amplified the corresponding Ca2+ influx into the cytosol). Hence, local dynamics of the Ca2+ concentration depend directly on local microgeometry and indirectly on global macrogeometry of the dendrite arborization, as the latter determines spatial asymmetry-related unequal transients in different parts of the dendritic arborization having active membrane properties.  相似文献   

8.
Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons.  相似文献   

9.
Summary An electron microscopical study was made of the coeloconic and placoid sensilla on the antennae of the aphids Aphis pomi, Macrosiphum euphorbiae, Nasonovia ribis-nigri, and Pemphigus bursarius. Scanning electron microscopy revealed some variation in morphology which may be functionally important but is more likely to reflect the evolution of these species.The placoid sensilla were shown by transmission electron microscopy to have the same basic structural pattern. Each group of two or three neurons is surrounded by two ensheathing cells. The ciliary regions of the dendrites pass through a vacuole into a cavity between an outer and an inner cuticle where they may be connected to the dendritic branches although such connections were not seen. Small pores (8 nm diameter) partially penetrate the cuticle implying that these sensilla have an olfactory function. They are suggested to be important in host selection by alate aphids.The coeloconic sensilla are poreless pegs with nonsensory cuticular projections at their tips. The distal portions of their dendrites contain densely packed microtubules and the cellular arrangement of the sensilla is similar to that of the placoid sensilla. It is suggested that they may function as thermoreceptors.The authors thank the Long Ashton Research Station, Bristol for use of the SEM facilities. A.K. Bromley gratefully acknowledges the tenure of a S.R.C. CASE Studentship and thanks Professor L.H. Finlayson for research facilities  相似文献   

10.
Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outposts partition selectively into longer dendrites and are excluded from axons. In dendrites, Golgi outposts concentrate at branchpoints where they engage in post-Golgi trafficking. Within the cell body, the Golgi apparatus orients toward the longest dendrite, and this Golgi polarity precedes asymmetric dendrite growth. Manipulations that selectively block post-Golgi trafficking halt dendrite growth in developing neurons and cause a shrinkage of dendrites in mature pyramidal neurons. Further, disruption of Golgi polarity produces neurons with symmetric dendritic arbors lacking a single longest principal dendrite. These results define a novel polarized organization of neuronal secretory trafficking and demonstrate a mechanistic link between directed membrane trafficking and asymmetric dendrite growth.  相似文献   

11.
The neuronal organization of the accessory olfactory bulb (AOB), which receives sensory information from the vomeronasal organ, was described in a squamate reptile (Podarcis hispanica) by means of light microscopy. Using the Golgi-impregnation method, seven neuronal types could be distinguished: Periglomerular cells constitute a morphologically heterogeneous population of small neurons located between and around the glomeruli. The mitral cells are diffusely distributed in the AOB. Their cell bodies are usually located within the mitral cell layer, but some of them could be also observed in the plexiform layers. Mitral cells were classified into three subgroups on the basis of their sizes and dendritic tree morphologies. Thus, the “outer mitral cells” have the biggest cell bodies, and their distal secondary dendrites are mainly distributed rostrocaudally in the external plexiform layer. The “inner mitral cells” have large cell bodies, and their secondary dendrites are distributed dorsoventrally and are located deeper than those of the other two subgroups. The third type, the “small mitral cells,” is the smallest one among mitral cells in the AOB, and from their cell bodies, only two main dendritic trunks arise. The granule cells are composed of several categories based on their different cell body locations and dendritic tree morphologies. Thus, the “superficial granule cells” are located exclusively in the external plexiform layer and have small dendritic fields. The “middle granule cells” have fusiform cell bodies—situated in the internal plexiform layer—and present a wide dendritic projection area. Finally, the “deep granule cells” are distributed throughout the granule cell layer and include a great variety of dendritic tree morphologies. The distribution and morphological features of all neuronal types constituting the AOB of Podarcis were compared with those reported on other vertebrates. The results suggest that the lamination pattern and neuronal organization of the AOB in lizards are more similar to that of mammals than to that of the remaining vertebrates.  相似文献   

12.
T. A. Keil 《Zoomorphology》1984,104(3):147-156
Summary Olfactory trichoid hairs on the antennae of male Antheraea silkmoths were reconstructed with respect to the following parameters: number, shape, course, and dimensions of outer dendritic segments as well as the numbers of their microtubules; inner and outer dimensions of the cuticular hair shafts; and number and distribution of pores and pore tubules in the hair walls. The smallest distances between dendritic membranes and inner hair surfaces were determined with respect to the possibility of pore tubule contacts. It was shown that most hairs contain one thick and one, or frequently two, thin dendrites. The number of microtubules in the dendrites is correlated with dendrite diameter, which decreases towards the hair tip. The dendrites form numerous swellings and constrictions: this beading occurs especially along the thin dendrites. The dendrites do not run straight, but rather follow a sinuous course in the hairs. The density of wall pores is lowest in the basal region of the hairs. Only in relatively few places do the dendritic membranes get near enough the hair walls to come into the probable range of the pore tubules. In the sensilla trichodea of A. polyphemus, the hairs as well as the dendrites have markedly smaller diameters than in A. pernyi.  相似文献   

13.
We investigated features of the spatial pattern of electrical bistable states of dendrites using a computer model of an abducens motoneuron with the dendritic branching reconstructed in detail. The dendritic membrane has an N-shaped current-voltage relation (I-V curve) determined mainly by the presence of L-type calcium channels. Such channels, according to indirect experimental data, are present in the dendrites of these cells together with glutamatergic NMDA-type channels also capable of determining electrical bistability of the membrane and the corresponding specific patterns of electrical activity generated by such neurons. For our model, we obtained steady-state local I-V curves and transferred spatial distribution maps of the membrane potential difference (surface density of transmembrane currents), as well as increments of the axial dendritic current, to three-dimensional images of the reconstructed branching dendrites. The latter increments determine the contribution of a dendritic site in general axial current delivering the charge to the trigger zone of a neuron. The simulation results showed that incorporation of non-inactivating calcium channels into dendritic membrane leads to the origination of a pattern of spatial distribution of bistable electrical states in the dendrites, which were not described earlier. Such features are most important under conditions of a stable state of high depolarization of the relevant parts of the dendrites. In this case, the respective feature was the existence of a zone of maximum density of the inward transmembrane current, which covers areas of first-order branching of all dendrites. Since the greatest relative contribution to the total current belongs to the inward calcium current, the above zone of first branchings can be considered a “hot spot” zone characterized by increased entry of Ca2+. This may have important functional consequences for local intracellular calcium signaling.  相似文献   

14.
The isopod Sphaeroma hookeri and many other isopods and peracarids have a sensory spine with laterally inserting sensory hair, positioned in the apical region of the propodal palm of pereopod 1. This spine is innervated by five to eight sensory cells (each giving rise to one cilium) the dendrites of which can be divided into an inner and outer dendritic segment. The cilia are surrounded by an extracellular, electron-dense dendritic sheath. Thirteen enveloping cells are present. The outer dendritic segment (structure beyond the basal bodies) contains two receptor lymph cavities; the inner one lying within the dendritic sheath is homologous with the inner receptor lymph cavity of insects. Scolopales, or tubular bodies, are lacking; their function is probably accomplished by the dendritic sheath. Apically the sensory hair does not have a pore, and the spine is heavily sclerotized. The inner dendritic segment begins with a basal body from which rootlets of different length and thickness extend into the dendrite. In the latter is an accumulation of vesicles. The dendrites keep close contact with other dendrites and the enveloping cells by desmosomal membrane structures. The possible importance of the sensory spine for phylogenetic studies is discussed.  相似文献   

15.
16.
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage–activated Ca2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.  相似文献   

17.
Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific subcompartments. However, the molecular mechanisms that control ion channel localization in distinct dendritic subcompartments are largely unknown. Here, we developed a quantitative live cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels that exhibit distinct localizations: Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms as evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms are crucial for their specific localizations within dendrites.  相似文献   

18.
The sensory innervation of the mandibular stylets of the aphid Brevicoryne brassicae (L.) has been examined by electron microscopy. Two groups of sensory neurones are present in the mandible. Each has two neurones, one with a short dendrite extending into the base of the mandible and ending in the base and another with a long microtubular process which extends 500 m? down to the distal tip of the mandible. The two neurones are enclosed by an ensheathing cell comparable to the trichogen cell enveloping the group of neurones innervating pegs and hairs. This ensheathing cell is supported by extensive electron-dense filaments to form a scolopale and is embedded in the mass of stylet-forming cells at the base of the mandible. The inner segments of the dendrites are anchored to the ensheathing cell by desmosome junctions. Desmosome junctions also bind the microtubular outer segments of the short and long dendrite to each other. There is no evidence of a dendritic sheath enclosing the distal portion of the short dendrite which ends while still in the extracellular space within the ensheathing cell. The microtubular process of the long dendrite extends down the lumen of the mandible enclosed by a close-fitting extracellular sheath which penetrates and is attached to the cuticular wall of the mandible tip. Distally this sheath is thickened on one side. Deflection of the mandible would therefore deform the dendritic membrane asymmetrically because the thin walls of the sheath would bend more than the thick walls. This would exert an unequal mechanical strain on the dendritic membrane which could result in depolarization in response to deflection in a particular direction. The arrangement of the dendrites and their sheaths within the mandible is such that deflection to the right would distort one dendrite in the same way as deflection to the left would distort the other.  相似文献   

19.
The present paper aims at describing the fine structure of coeloconic sensilla located on the cutting valves of the endophytic ovipositor of two Odonata species, the anisopteran Aeshna cyanea (Aeshnidae) and the zygopteran Ischnura elegans (Coenagrionidae), by carrying out parallel investigations under SEM and TEM. In both species these coeloconic sensilla are innervated by four unbranched neurons forming four outer dendritic segments enveloped by the dendrite sheath. One dendrite terminates at the base of the peg forming a well developed tubular body, while the other three enter the peg after interruption of the dendrite sheath. The cuticle of the peg shows an apical pore and a joint membrane. This last feature, together with the tubular body and the suspension fibers, represent the mechanosensory components of the sensillum while the pore and the dendrites entering the peg allow chemoreception. The ultrastructural organization of these coeloconic sensilla is in agreement with the one reported for insect gustatory sensilla. Our investigation describes for the first time typical insect gustatory sensilla in Odonata. Electrophysiological and behavioral studies are needed to verify the role that these structures can perform in sensing the egg-laying substrata.  相似文献   

20.
Summary Olfactory receptor molecules are assumed to be integral membrane proteins which may be visualized on fracture faces of the membrane as intramembrane particles (IMPs). In the present study, the plasma membrane of the receptor dendrites and ciliated epithelial cells in the teleost fish Alburnus alburnus were studied by freeze-fracture electron microscopy. The IMP diameters on the membrane P-faces of both receptor dendrites and ciliated epithelial cells ranged from 5 nm to 11 nm. The average IMP densities on membrane fracture faces of the ciliated and microvillous sensory dendrites were 3130±780 for the cilia, 2070±550 for the microvilli, 2390±1190 on the knob regions and 3050±1130/m on the lateral dendrite membranes. The IMP densities on the P fracture faces of the cilia and knob regions were compared with the densities found on the lateral membranes of each individual dendrite. The ratios ranged from 0.5 to 0.96 in the case of the cilia/lateral membrane and from 0.5 to 0.90 in that of the knob/lateral membrane, indicating that, in contrast to the average densities, it is the lateral membrane which has the higher IMP densities and not the cilia. The great variations in the average IMP densities, as well as the considerable variety of the ratios, may be explained by the maturation and turnover of the olfactory sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号