首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2019,22(3):860-867
As important pollination species, honeybees play substantial impacts on the balance of global ecosystem, including two best-known honeybees Apis mellifera and Apis cerana. Embryogenesis is a fundamental stage of honeybee development and plays important roles in supporting the whole-life developmental process. However, few studies were reported on honeybee embryonic morphology using egg section, possibly due to the fragility of honeybee eggs and the difficulty of making embryonic sections. In this study, we reported a simply equipped method of frozen sectioning and PI (propidium iodide) staining to show the inner structure and cell distribution of A. cerena embryos at the different embryonic developmental stages. We found that the stages of A. cerena embryogenesis could also be typically classified into ten developmental stages, which are similar with the sister honeybee species, A. mellifera. To be noted, besides the cell distribution in the whole egg, we clearly observed the migration route of embryonic cells during the early embryonic development in A. cerena. This study provides a new insight into the whole process of honeybee embryogenesis from the perspective of egg sectioning, a histological basis for genetic manipulation using A. cerena eggs, and a reference method for egg sectioning for other insect species.  相似文献   

2.
The spider Achaearanea tepidariorum is emerging as a non-insect model for studying developmental biology. However, the availability of microinjection into early embryos of this spider has not been reported. We defined the early embryonic stages in A. tepidariorum and applied microinjection to its embryos. During the preblastoderm 16- and 32-nucleus stages, the energids were moving toward the egg periphery. When fluorochrome-conjugated dextran was microinjected into the peripheral region of 16-nucleus stage embryos, it was often incorporated into a single energid and inherited in the progeny without leaking out to surrounding energids. This suggested that 16-nucleus stage embryos consisted of compartments, each containing a single energid. These compartments were considered to be separate cells. Fluorochrome-conjugated dextran could be introduced into single cells of 16- to 128-nucleus stage embryos, allowing us to track cell fate and movement. Injection with mRNA encoding a nuclear localization signal/green fluorescent protein fusion construct demonstrated exogenous expression of the protein in live spider embryos. We propose that use of microinjection will facilitate studies of spider development. Furthermore, these data imply that in contrast to the Drosophila syncytial blastoderm embryo, the cell-based structure of the Achaearanea blastoderm embryo restricts diffusion of cytoplasmic gene products.  相似文献   

3.
Viable bacteria were found to coexist with developing embryos in egg capsules (cocoons) of the earthworm Eisenia fetida. Earthworms were reared under standardized conditions, and bacterial densities were measured in distinct batches of cocoons collected weekly for 10 weeks. Cocoons weighing 12 mg contained a mean viable bacterial population of approximately 108 CFU/g of cocoons. No difference was found in viable counts obtained from cocoons incubated at 15°C and cocoons incubated at 24°C. Viable bacterial numbers increased with cocoon age, while acridine orange direct counts of microbial cells were stable at approximately 109 cells per g of cocoons. Bacteria isolated from cocoons were used to develop antisera in rabbits for the production of strain-specific fluorescent antibodies. Fluorescent antibody and selective plating techniques were used to monitor populations of these bacteria in earthworm bedding and to determine whether cocoons acquire bacteria from the environment in which they are formed. Cocoon isolates were readily recovered from cocoons formed in inoculated bedding at densities of 108 CFU/g of cocoons. Bradyrhizobium japonicum USDA 110 and UMR 161 added to bedding were also recovered from cocoons, but at lower densities than cocoon isolates. Escherichia coli K-12(pJP4) inoculum was recovered from bedding but not from cocoons. The bacterial complement of Eisenia fetida cocoons is affected by inoculation of selected bacterial isolates in the worm growth environment.  相似文献   

4.
The aim of this study was to assess the intensity of enzymatic antioxidative parameters [i.e., superoxide dismutase (SOD), catalase (CAT), and the glutathione peroxidases each selene dependent, GPOX or selene independent, including GSTPx, glutathione S-transferase, and GST] and non-enzymatic antioxidative parameters [i.e., glutathione total (GSH-t), the heat shock proteins of Hsp70, and metallothioneins (Mt)] in the midgut glands of female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to natural stressors (i.e., heat shock and starvation) and anthropogenic stressors (i.e., the organophosphorous pesticide dimethoate) under laboratory conditions. The spiders were collected from two differentially polluted sites both localized in southern Poland: Olkusz, which is heavily polluted with metals, and Pilica, the reference site. In response to the stressing factors, increases in Hsp70 levels, in the concentrations of total glutathione and in the activity levels of glutathione-dependent enzymes (GPOX, GSTPx, and GST) were found in the midgut glands of males. In the females, high levels of activity of CAT and SOD were revealed, as well as an increased percentage of Mt-positive cells. Preexposed females, in comparison to the individuals from the reference site, responded with increased SOD activity, irrespective of the stressing factor. In contrast, the changes in the antioxidative parameters in the midgut glands of male X. nemoralis seem to reflect a short-term reaction to the applied stressors and do not confirm the effects of long-term selection in a polluted environment.  相似文献   

5.
Allozyme variation was determined in two land snail species (Cepaea nemoralis and Succinea putris) from four localities in northern Belgium. In each locality we selected a polluted and a nearby, less-polluted, reference plot. We examined whether (i) genetic variability differed between the polluted and reference plots, (ii) populations from polluted plots experienced recent bottlenecks, and (iii) certain allele or genotype frequencies were associated with the pollution. Our results suggest that (i) about 13% of the genetic differentiation in C. nemoralis and 5% in S. putris was due to differences among polluted and reference plots, (ii) polluted and reference plots had comparable levels of genetic variation, but in C. nemoralis observed heterozygosities were higher in polluted plots, (iii) most plots showed significant evidence for recent bottlenecks, irrespective of the degree of pollution, so that bottlenecks seem poor indicators of pollution-induced stress in land snails, and (iv) mutagenic or pollution-induced modifications did not seem to account for new allozyme variants in polluted sites. The observed patterns of genetic variation may be explained by the action of genetic drift, pollution-mediated selection, restricted gene flow, or a combination of these processes.  相似文献   

6.

Background  

Comparative, functional, and developmental studies of animal morphology require accurate visualization of three-dimensional structures, but few widely applicable methods exist for non-destructive whole-volume imaging of animal tissues. Quantitative studies in particular require accurately aligned and calibrated volume images of animal structures. X-ray microtomography (microCT) has the potential to produce quantitative 3D images of small biological samples, but its widespread use for non-mineralized tissues has been limited by the low x-ray contrast of soft tissues. Although osmium staining and a few other techniques have been used for contrast enhancement, generally useful methods for microCT imaging for comparative morphology are still lacking.  相似文献   

7.
Levels (percentage composition) of water, ash, carbohydrate, lipid, protein, and calories were determined for eggs, pentaculae, and adults of the sea cucumber Cucumaria curata Cowles. Component contents (μg/individual) were calculated for eggs and pentaculae. During the 28 days of development to hatching, the large yolky eggs gain water and ash, the total dry weight increasing from 169 to 190 μg/egg during embryogenesis. There were no statistically significant changes in lipid, protein, and caloric contents during embryogenesis, but carbohydrate decreased by 0.82 μg/egg.The decrease in carbohydrate is sufficient to account for estimated embryonic energy requirements. Based on the utilization of carbohydrate, embryos of C. curata show a nutritional pattern similar to that of the planktonic embryos of sea urchins and different from that of embryos developing from terrestrial eggs, freshwater eggs, and planktonic and demersal marine eggs.Although broods varied widely in egg number and mean egg dry weight, C. curata gives eggs which contain a constant proportion of organic components.Levels of ash, water, and protein in the adults exceeded those in the pentacula, and lipid comprises a much smaller proportion of the adult body than it did of the pentacula.  相似文献   

8.
The Drosophila melanogaster YA protein is a maternally provided nuclear lamina component that is essential during the transition from meiosis to mitosis at the beginning of embryogenesis. Localization of YA to the nuclear envelope is required for its function; this localization is cell cycle-dependent during embryogenesis. Here we show that the ability of YA to enter nuclei is modulated during development. In developing egg chambers, YA protein is made but excluded from nuclei of nurse cells and oocytes; upon egg activation, YA acquires the ability to enter nuclei and becomes incorporated into the nuclear lamina in unfertilized eggs and embryos. This localization switch correlates with changes in the phosphorylation state of YA. YA in ovaries is hyperphosphorylated relative to YA in unfertilized eggs and embryos. Through site-directed mutagenesis, we identified 443T, a potential phosphorylation site for both cyclin-dependent protein kinase and mitogen-activated-protein kinase, as one of the sites likely involved in this developmental control. Our results suggest that phosphorylation plays a role in modulating the localization of YA during development. A model for developmental regulation of the nuclear entry of YA is proposed and implications for understanding Drosophila egg activation are discussed.  相似文献   

9.
Factors affecting somatic embryogenesis in peanut (Arachis hypogaea L.) using leaflet explants of seedlings obtained from aseptically germinated embryo axes were evaluated. Somatic embryogenesis was influenced by developmental stage, leaflet size, induction medium, and time on induction medium. Leaflets that were 5–7 mm long had a greater embryogenic response than smaller or larger leaflets. Percent embryogenesis and mean number of embryos were related to the developmental stage of germinating seedlings. A greater response was obtained if leaflets were folded and closely appressed. Preselection of leaflets increased percent embryogenesis from 21% up to 67%. As leaflets unfolded, embryogenesis decreased; open leaflets lost the potential for embryogenesis. The optimal induction conditions were a 7-day incubation period on Murashige and Skoog medium with 136 μm 2,4-dichlorophenoxyacetic acid and 0.93 μm kinetin. Somatic embryos germinated to form plants that exhibited a normal morphology. Received: 29 December 1997 / Revision received: 9 April 1998 / Accepted: 24 April 1998  相似文献   

10.
11.
Concealed development of many animal embryos prevents examination of development and limits the application of embryo manipulation techniques aimed at understanding developmental processes. In embryos developing in utero, such as in mammals, it is necessary to dissect embryos from the mother and, upon manipulative intervention, to implant them back into the recipient. Parasitic wasps present a promising system for understanding the evolution of early developmental processes. In basal ectoparasitic species that lay eggs on the surface of the host, it is possible to adapt embryo manipulation techniques developed in Drosophila. However, their derived endoparasitic relatives, which exhibit various modifications of developmental programs, undergo concealed development within the host body. For example, the parasitic polyembryonic wasp Copidosoma floridanum oviposits an egg into the egg of the host moth Trichoplusia ni. The host larva emerges and the parasite undergoes development within the host body, preventing embryo manipulation as a means of examining developmental regulation. Here we present a protocol for embryo transfer that allows the transplantation of C. floridanum egg into the host egg. This approach opens a new avenue in the application of various embryo manipulation techniques aimed at understanding the evolution of embryogenesis in endoparasitic Hymenoptera. In addition, this approach has potential for the development of other tools in C. floridanum, such as transgenesis and reverse genetics, which can also be extended to other endoparasitic species.  相似文献   

12.
Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.  相似文献   

13.
Somatic embryos can be used for propagating forest trees vegetatively, which is of great importance for capturing the genetic gain in breeding programs. However, many economically important Pinus species are difficult or impossible to propagate via somatic embryogenesis. In order to get a better understanding of the difficulties to propagate Pinus species via somatic embryogenesis, we are studying the developmental pathway of somatic embryos in different cell lines. In a previous study, we showed that the morphology of early somatic embryos in Scots pine (Pinus sylvestris) differs between cell lines giving rise to normal or abnormal cotyledonary embryos. In this study, we have compared the proliferation and degeneration pattern of early and late embryos in a normal and abnormal cell line. In both cell lines, a high frequency of the embryos degenerated. Among the degenerating embryos, two main degeneration patterns could be distinguished. In the normal cell line, the embryos degenerated similar to how the subordinate embryos are degraded in the seed. In the abnormal cell line, the degeneration of the embryos resulted in a continuous loop of embryo degeneration and differentiation of new embryos. We observed a similar degeneration pattern when embryogenic tissue was initiated from megagametophytes containing zygotic embryos at the stage of cleavage polyembryony. Based on our results, we suggest that the degeneration pattern in abnormal cell lines starts during initiation of embryogenic cultures.  相似文献   

14.
Embryo morphology, feeding mechanism and changes in composition of the egg capsule content during development (intracapsular fluids and embryos) were studied in Odontocymbiola magellanica from newly spawned egg capsules to the pre-hatching juvenile stage. Changes in embryo morphology and behavior are presented, based on observations and micrographs of living specimens and scanning electron microscopy. The arrangement of velar cilia and athrocytes and shell gland location and development differed markedly from other studied caenogastropods. Embryo ingestion of intracapsular fluid was promoted by velar ciliary currents at least from the early veliger stage, while feeding by grazing on the inner membranous layer of the egg capsule was rarely observed until juveniles were about to hatch. The main growth of embryos occurred during the veliger stages. A significant nutritional investment in egg capsules, as compared with other South American volutids was observed. Nutrition from proteins seemed to predominate at the expense of a high molecular weight fraction (>220 kDa). Calcium concentration in the intracapsular fluid remained constant during development, but notably, the total intracapsular content (i.e., the amount contained in both fluid and embryos) increased 3-fold, which may be explained by extraction from the egg capsule magnesium-rich calcite cover, or alternatively, by uptake of calcium from the surrounding sea water. Ammonia, a major end-product of nitrogen metabolism in marine invertebrates, was present in both embryos and intracapsular fluid, from which it may easily diffuse to the surrounding sea water through the egg capsule wall. Our results on embryo morphology, development and biochemical changes provide useful comparative data for evolutionary and developmental studies in the Volutidae as well as in other caenogastropods.  相似文献   

15.
16.
Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Identifying stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary developmental stages were performed. Mass spectrometry data have been deposited in the ProteomeXchange with the dataset identifier PXD021107. Comparative proteomic analyses revealed a total of 801 proteins, with 392 classified as differentially accumulated proteins in at least one of the developmental stages. The globular-staged presented a higher number of unique proteins (16), and 7 were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages and then decreased with increasing development, and they contributed to cell homeostasis in early somatic embryos. A progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins that lead to somatic embryo maturation was also observed. The differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins was correlated with increases in putrescine and spermidine contents, which suggests that both polyamines should be tested to determine whether they increase the conversion rates of globular- to cotyledonary-staged somatic embryos. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins more abundant during the early somatic embryo stages and seed maturation proteins more abundant during the late stages.  相似文献   

17.
A microcosm experiment was performed to investigate temporal (up to 16 weeks) and spatial variation in metal transfer in a soil–food (nettle)–snail (Cepaea nemoralis) food chain and biomarker responses in the digestive gland of the same snails. Adult snails were sampled from an uncontaminated site and transferred to five sites located 0.5, 2.5, 3, 5, and 10 km from a historically polluted point source. All sites were park areas where grasslands interfered with patches of deciduous forest. Soil physicochemical properties (pH, clay%, OC%) significantly explained the uptake of metals by nettle. Concentrations of metals in the digestive gland (DG) of snails were significantly related to those in nettle, but rarely to soil physicochemical properties. In general metal concentrations in the DG fluctuated while As, Ni, Pb and Zn showed a site dependent increase with time. Despite the long term exposure, biomarker concentrations (lipid, glycogen, proteins, glutathione-S-transferases), and shell morphology, were not related to DG metal concentrations. Our investigation emphasizes the need for controlled long-term studies on the transfer and effects of metals in food chains since short term studies might only show temporary physiological changes due to experimental acclimation.  相似文献   

18.
As described from light microscopy, embryogenesis of the free-living soil nematode Caenorhabditis elegans follows a strictly determinate cleavage pattern, producing a newly hatched juvenile with about 550 cells arranged quite predictably. In this communication we present results on the electron microscopy of C. elegans embryos and introduce methods for fixing, embedding, and serially sectioning embryos encased in the egg shell. Fixation at elevated temperature either with osmium tetroxide alone or with glutaraldehyde followed by osmium tetroxide gives reproducible results with embryos in all developmental stages so far tested, from the fertilized egg to hatching. Eighteen wild-type eggs at various stages have been sectioned to date. We have achieved using newly developed procedures for analyzing electron micrographs of serial sections detailed reconstructions of the cellular anatomy of complete embryos of a metazoan organism. Three-dimensional serial section reconstructions were made with a computer system. We characterize and map the 24 cells of an early-stage embryo in this report. Additionally, we can specify the lineage history of all cells of this embyro by matching the reconstructed three-dimensional arrangement of this series to a living embryo at this stage, where cell lineage has been observed with Nomarski optics and analyzed using videotape (U. Deppe, E. Schierenberg, T. Cole, C. Krieg, D. Schmitt, B. Yoder, and G. von Ehrenstein, 1978, Proc. Nat. Acad. Sci. USA75, 376–380). In addition, cytoplasmic and nuclear morphological features such as incomplete membranes between sister cells, rounding-off of the cytoplasm, and chromatin condensation patterns have been correlated with cell division. Mapping of such structures presents a new method by which supplementary lineage information can be obtained directly from an electron micrographic series.  相似文献   

19.
A simple and efficient protocol for direct somatic embryogenesis and plant regeneration of kohlrabi (Brassica oleracea var. gongylodes) was developed. Somatic embryos were induced from immature zygotic embryos at different developmental stages cultured on Murashige and Skoog medium supplemented with 0, 0.5, 1.0, or 1.5 mg/l 2,4-dichlorophenoxyacetic acid. Zygotic embryos at the early cotyledonary stage, which were cultured for 4 wk on plant growth regulator-free (PGR-free) medium, displayed the highest percentage of somatic embryogenesis (80.7%). Embryogenic tissue could be subcultured on the same medium for over 1 yr. Embryogenic lines derived from early cotyledonary stage zygotic embryos displayed the highest intensity of secondary embryogenesis (highest mean number of new somatic embryos per responsive somatic embryo explant). Histological analyses confirmed the direct origin of the secondary somatic embryos. Prolonged culturing of embryogenic tissue on PGR-free medium led to somatic embryo development into plantlets that were successfully acclimated in the greenhouse with a survival rate of 72.5%. Flow cytometry analysis showed no ploidy variation in 96.7% of the acclimated plants.  相似文献   

20.
Changes in the pattern of egg proteins of Drosophila melanogaster during the process of embryogenesis were investigated by high-resolution, two-dimensional polyacrylamide gel electrophoresis. We observed significant changes of egg proteins during embryogenesis. Three major classes were observed. Class I includes most proteins; these were found continuously throughout embryogenesis. Class II proteins appeared at certain times during embryogenesis and continued to be present in young larvae, or they were present in the ovary, disappeared once, and reappeared at later times. Class III proteins were found at limited times during embryogenesis. The appearance and disappearance of these proteins, which appear to be temporally related to developmental stages, should make them useful molecular markers for the analysis of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号