首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PMCA4, a membrane protein, is the major Ca2+ efflux pump in murine sperm where its deletion leads to a severe loss of hyperactivated motility and to male infertility. We have previously shown that the PMCA4b splice variant interacts with CASK (Ca2+/CaM-dependent serine kinase) in regulating sperm Ca2+. More recently we detected that PMCA4a isoform, in addition to its presence in testis, is secreted in the epididymal luminal fluid and transferred to sperm. Here we show that Pmca4 mRNA is expressed in both the 4a and 4b variants in the vagina, uterus, and oviduct. Immunofluorescence reveals that PMCA4a is similarly expressed and is elevated during estrus, appearing in the glandular and luminal epithelia. Western analysis detected PMCA4a in all tissues and in the luminal fluids (LF) of the vagina (VLF), uterus (ULF), and the oviduct (OLF) collected during estrus. It was ~9- and 4-fold higher in OLF than in VLF and ULF, and only marginally present in LF collected at metestrus/diestrus. Fractionation of the LF collected at estrus, via ultracentrifugation, revealed that 100% of the PMCA4a resides in the vesicular fraction of the ULF and OLF. Transmission electron microscopy (TEM) revealed that OLF vesicles have an exosomal orientation (with the cytoplasmic-side inward), a size range of 25-100 nm, with the characteristic CD9 biomarker. Thus, we dubbed these vesicles “oviductosomes”, to which PMCA4a was immunolocalized. Incubation of caudal sperm in the combined LF or exosomes resulted in up to a ~3-fold increase of sperm PMCA4a, as detected by flow cytometry, indicating in vitro uptake. Our results are consistent with the increased requirement of Ca2+ efflux in the oviduct. They show for the first time the presence of oviductal exosomes and highlight their role, along with uterosomes and vaginal exosomes, in post-testicular sperm acquisition of PMCA4a which is essential for hyperactivated motility and fertility.  相似文献   

2.
Exosomes, cell-derived vesicles of endosomal origin, are continuously released in the extracellular environment and play a key role in intercellular crosstalk. In this study, we have investigated whether transfer of integrins through exosomes between prostate cancer (PrCa) cells occurs and whether transferred integrins promote cell adhesion and migration. Among others, we have focused on the αvβ6 integrin, which is not detectable in normal human prostate but is highly expressed in human primary PrCa as well as murine PrCa in Ptenpc−/− mice. After confirming the fidelity of the exosome preparations by electron microscopy, density gradient, and immunoblotting, we determined that the αvβ6 integrin is actively packaged into exosomes isolated from PC3 and RWPE PrCa cell lines. We also demonstrate that αvβ6 is efficiently transferred via exosomes from a donor cell to an αvβ6-negative recipient cell and localizes to the cell surface. De novo αvβ6 expression in an αvβ6-negative recipient cell is not a result of a change in mRNA levels but is a consequence of exosome-mediated transfer of this integrin between different PrCa cells. Recipient cells incubated with exosomes containing αvβ6 migrate on an αvβ6 specific substrate, latency-associated peptide-TGFβ, to a greater extent than cells treated with exosomes in which αvβ6 is stably or transiently down-regulated by shRNA or siRNA, respectively. Overall, this study shows that exosomes from PrCa cells may contribute to a horizontal propagation of integrin-associated phenotypes, which would promote cell migration, and consequently, metastasis in a paracrine fashion.  相似文献   

3.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

4.
Sperm–egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell–cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm–egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (α and β subunits). Fertilin α and β are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin β functions in sperm–egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin α, fertilin β, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin β, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80–90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin β active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin β also strongly inhibited (80–90%) both sperm–egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin β showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin β in sperm–egg plasma membrane adhesion leading to fusion.  相似文献   

5.
6.

Introduction

Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in communication among joint tissue cells.

Methods

Human synovial fibroblasts (SFB) and articular chondrocytes were obtained from normal knee joints. Exosomes isolated from conditioned medium of SFB were analyzed for size, numbers, markers and function. Normal articular chondrocytes were treated with exosomes from SFB, and Interleukin-1β (IL-1β) stimulated SFB. OA-related genes expression was quantified using real-time PCR. To analyze exosome effects on cartilage tissue, we performed glycosaminoglycan release assay. Angiogenic activity of these exosomes was tested in migration and tube formation assays. Cytokines and miRNAs in exosomes were analyzed by Bio-Plex multiplex assay and NanoString analysis.

Results

Exosomes from IL-1β stimulated SFB significantly up-regulated MMP-13 and ADAMTS-5 expression in articular chondrocytes, and down-regulated COL2A1 and ACAN compared with SFB derived exosomes. Migration and tube formation activity were significantly higher in human umbilical vein endothelial cells (HUVECs) treated with the exosomes from IL-1β stimulated SFB, which also induced significantly more proteoglycan release from cartilage explants. Inflammatory cytokines, IL-6, MMP-3 and VEGF in exosomes were only detectable at low level. IL-1β, TNFα MMP-9 and MMP-13 were not detectable in exosomes. NanoString analysis showed that levels of 50 miRNAs were differentially expressed in exosomes from IL-1β stimulated SFB compared to non-stimulated SFB.

Conclusions

Exosomes from IL-1β stimulated SFB induce OA-like changes both in vitro and in ex vivo models. Exosomes represent a novel mechanism by which pathogenic signals are communicated among different cell types in OA-affected joints.  相似文献   

7.
Skeletal muscle stem cells represent an abundant source of autologous cells with potential for regenerative medicine that can be directed to differentiate into multiple lineages including osteoblasts and adipocytes. In the current study, we found that α7 integrin-positive human skeletal muscle stem cells (α7+hSMSCs) could differentiate into the odontoblast lineage under specific inductive conditions in response to bone morphogenetic protein-4 (BMP-4). Cell aggregates of FACS-harvested α7+hSMSCs were treated in suspension with retinoic acid followed by culture on a gelatin scaffold in the presence of BMP-4. Following this protocol, α7+hSMSCs were induced to down-regulate myogenic genes (MYOD and α7 integrin) and up-regulate odontogenic markers including dentin sialophosphoprotein, matrix metalloproteinase-20 (enamelysin), dentin sialoprotein, and alkaline phosphatase but not osteoblastic genes (osteopontin and osteocalcin). Following retinoic acid and gelatin scaffold/BMP-4 treatment, there was a coordinated switch in the integrin expression profile that paralleled odontoblastic differentiation where α1β1 integrin was strongly up-regulated with the attenuation of muscle-specific α7β1 integrin expression. Interestingly, using siRNA knockdown strategies revealed that the differentiation-related expression of the α1 integrin receptor positively regulates the expression of the odontoblastic markers dentin sialophosphoprotein and matrix metalloproteinase-20. These results strongly suggest that the differentiation of α7+hSMSCs along the odontogenic lineage is dependent on the concurrent expression of α1 integrin.  相似文献   

8.
The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo.  相似文献   

9.
Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca2+, or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca2+. Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca2+ entry in sperm through the Ca2+/CaM/CaMKKs/CaMKI pathway. The Ca2+/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca2+ entry in the cells.  相似文献   

10.
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.  相似文献   

11.
Simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infection results in an early and enduring depletion of intestinal CD4+ T cells. SIV and HIV bind integrin α4β7, thereby facilitating infection of lymphocytes that home to the gut-associated lymphoid tissue (GALT). Using an ex vivo flow cytometry assay, we found that SIVmac239-infected cells expressed significantly lower levels of integrin α4β7 than did uninfected cells. This finding suggested a potential viral effect on integrin α4β7 expression. Using an in vitro model, we confirmed that integrin α4β7 was downregulated on the surfaces of SIVmac239-infected cells. Further, modulation of integrin α4β7 was dependent on de novo synthesis of viral proteins, but neither cell death, the release of a soluble factor, nor a change in activation state was involved. Downregulation of integrin α4β7 may have an unappreciated role in the CD4 depletion of the mucosal-associated lymphoid compartments, susceptibility to superinfection, and/or immune evasion.Infection of macaques with simian immunodeficiency virus (SIV) and humans with human immunodeficiency virus (HIV), regardless of the route of transmission, results in early establishment of infection in the gut-associated lymphoid tissue (GALT) (3, 23, 25). Consequently, the CD4+ T cells of the GALT are depleted, and intestinal integrity is compromised (4, 21, 37). The mechanism of GALT depletion, as well as the mechanism of viral localization to the GALT, remains poorly understood.GALT localization is mediated, at least in part, by integrins, a large family of “sticky” cell surface proteins (24, 35, 36). Integrins facilitate conversation between the environment and a cell, thereby influencing cellular adhesion, trafficking, proliferation, and signaling. Consequently, numerous viruses, despite having a small number of proteins, have developed mechanisms to exploit integrins and hence cellular processes, in order to facilitate viral replication and immune evasion (17, 24, 34, 36). Examples of such viruses include human cytomegalovirus (39), rotavirus (14), and SIV/HIV (40). One well-studied integrin, α4β7, mediates migration of lymphocytes to the GALT (31, 33). In 2008, Arthos et al. demonstrated that HIV-1 glycoprotein, gp120, binds integrin α4β7, facilitating infection of CD4+ T cells and increasing viral replication efficiency (1).Recent in vivo studies have revealed that CD4+ T cells expressing high amounts of integrin α4β7 (integrin α4β7 high) are preferentially infected during acute SIV infection (15, 38). In addition, integrin α4β7 high CD4+ T cells contain greater than one provirus per cell during peak viral infection, suggesting that the cells are unusually susceptible to superinfection. Unexpectedly, superinfection is not observed in integrin α4β7 high CD4+ T cells after peak viral infection (15). Integrin α4β7 high-expressing CD4+ T cells are also depleted from the circulation parallel to the loss of intestinal CD4+ cells, suggesting a fundamental role for integrin α4β7 in SIV pathogenesis (38). The mechanism underlying the depletion of integrin α4β7 high-expressing cells and whether SIV-infected cells are directly or indirectly involved remain unknown. Thus, understanding the single-cell dynamics of integrin α4β7 during SIV infection may improve our understanding of SIV and HIV pathogenesis and clarify the role of integrin α4β7 signaling in mucosal trafficking.To examine the single-cell dynamics of integrin α4β7 expression during SIV infection, we used a novel, ex vivo, flow cytometry assay (M. Reynolds, unpublished data). We observed that infected, Gag p27+ cells expressed significantly (P = 0.0085) lower levels of integrin α4β7 than uninfected, CD4+ T cells from the same animal, at the same time point. Thus, we hypothesized that SIV decreases integrin α4β7 expression on the surfaces of virus-infected cells. In vitro, integrin α4β7 expression was downregulated on SIVmac239-infected cells as rapidly as 24 h postinfection. Unexpectedly, integrin α4β7 levels were also perturbed on uninfected cells with an increase in number of cells with intermediate integrin α4β7 expression. The modulation of integrin α4β7 was dependent on de novo synthesis of a viral protein(s), but neither cell death, release of a soluble factor, nor a change in activation state were involved. Combined, this finding suggests an as-yet-unidentified viral effect on integrin α4β7 that may influence depletion of the mucosal associated lymphoid compartments, susceptibility to superinfection, and/or immune evasion during SIV infection.  相似文献   

12.
High concentrations of urea were shown to induce a paradoxical regulatory volume decrease response with K+ channel opening and subsequent hepatocyte shrinkage (Hallbrucker, C., vom Dahl, S., Ritter, M., Lang, F., and Häussinger, D. (1994) Pflügers Arch. 428, 552–560), although the hepatocyte plasma membrane is thought to be freely permeable to urea. The underlying mechanisms remained unclear. As shown in the present study, urea (100 mmol/liter) induced within 1 min an activation of β1 integrins followed by an activation of focal adhesion kinase, c-Src, p38MAPK, extracellular signal-regulated kinases, and c-Jun N-terminal kinase. Because α5β1 integrin is known to act as a volume/osmosensor in hepatocytes, which becomes activated in response to hepatocyte swelling, the findings suggest that urea at high concentrations induces a nonosmotic activating perturbation of this osmosensor, thereby triggering a volume regulatory K+ efflux. In line with this, similar to hypo-osmotic hepatocyte swelling, urea induced an inhibition of hepatic proteolysis, which was sensitive to p38MAPK inhibition. Molecular dynamics simulations of a three-dimensional model of the ectodomain of α5β1 integrin in water, urea, or thiourea solutions revealed significant conformational changes of α5β1 integrin in urea and thiourea solutions, in contrast to the simulation of α5β1 in water. These changes lead to an unbending of the integrin structure around the genu, which may suggest activation, whereas the structures of single domains remained essentially unchanged. It is concluded that urea at high concentrations affects hepatic metabolism through direct activation of the α5β1 integrin system.  相似文献   

13.
14.
15.
16.

Purpose

The tetraspanin CD151 acts as a promoter of metastasis and invasion in several tumors. However, the role of CD151 in human gastric cancer (HGC) remains unclear.

Methods

Twenty HGC specimens and matched nontumor samples, human gastric epithelial cells (HGEC), and four gastric cancer cell lines were used to analyze CD151 expression. Short hairpin RNA-mediated downregulation of CD151 expression in HGC cells was performed to examine the role of CD151 in the proliferation and metastasis/invasion of HGC cells in vivo and in vitro. The relationship of CD151 with integrin α3 in HGC cells was investigated by silencing integrin α3 followed by co-immunoprecipitation and immunofluorescence staining. Finally, the prognostic value of CD151 and integrin α3 was evaluated by immunohistochemistry in tissue microarrays of 76 HGC patients.

Results

CD151 was expressed at higher levels in HGC tissues and HGC cells than in nontumor tissues and HGEC cells. Down-regulation of CD151 by vshRNA-CD151 impaired metastasis and invasion of HGC-27 cells, but did not affect cell proliferation. CD151 formed a complex with integrin α3 in HGC cells. CD151-cDNA transfection rescued the metastatic potential and invasiveness of HGC-27-vshCD151 cells, but not those of HGC-27-vshintegrin α3 cells in vitro. Clinically, CD151 overexpression was significantly correlated with high TNM stage, depth of invasion and positive lymph node involvement (p<0.05), and high levels of integrin α3 were associated with large tumor size, high TNM stage, depth of invasion and lymph node involvement (p<0.05). Importantly, the postoperative 5-year overall survival of patients with CD151low and/or integrin α3low was higher than that of patients with CD151high and/or integrin α3high.

Conclusion

CD151 is positively associated with the invasiveness of HGC, and CD151 or the combination of CD151 and integrin α3 is a novel marker for predicting the prognosis of HGC patients and may be potential therapeutic targets.  相似文献   

17.
Vesicular transfer of membrane components to bovine epididymal spermatozoa   总被引:1,自引:0,他引:1  
Epididymosomes (apocrine secreted epididymal vesicles) are assumed to play a crucial role in sperm maturation. Our aim has been to analyze the fusogenic properties of bovine epididymosomes and their involvement in the transfer of membrane components (lipids, proteins, plasma membrane Ca2+-ATPase 4 [PMCA4]) into bovine sperm. The fusogenic properties of epididymosomes with spermatozoa were investigated in vitro by using octadecyl rhodamine-B (R18)-labeled epididymosomes. Spermatozoa isolated from the epididymal caput showed a higher fusion rate than those taken from the cauda. The fusion rate was dependent on pH and time. Furthermore, the lipid and protein content in spermatozoa changed during epididymal transit and after in vitro fusion with epididymosomes. Following the in vitro fusion of caput spermatozoa with epididymosomes, the cholesterol/total phospholipid ratio of the sperm plasma membrane decreased. The effect was comparable with the cholesterol/total phospholipid ratio of native cauda spermatozoa. Co-incubation experiments of spermatozoa with biotinylated epididymosomes additionally revealed that proteins were transferred from epididymosomes to sperm. To examine the potential transfer of epididymis-derived PMCA4 to spermatozoa, immunofluorescence analysis and Ca2+-ATPase activity assays were performed. In caput spermatozoa, the PMCA4 fluorescence signal was slightly raised and Ca2+-ATPase activity increased after in vitro fusion. Thus, our experiments indicate significant changes in the lipid and protein composition of epididymal sperm following interaction with epididymosomes. Moreover, our results substantiate the presumption that PMCA4 is transferred to spermatozoa via epididymosomes.  相似文献   

18.
Yang Liu  Xuetao Cao 《Cell research》2016,26(2):149-150
A recent paper in Nature shows that tumor exosomes expressing unique integrins can determine organotropic metastasis by preparing pre-metastatic niche through their integrins-mediated fusion with and fertilization of organ-specific resident cells.Tumor metastasis is a critical step in malignant progression of tumors and has been implicated in the failure of most cancer therapeutics. One salient feature of metastasis is that some types of cancer cells preferentially colonize and metastasize to specific organs, under the control of a range of cellular and molecular programs1. Many studies focus largely on identifying cell-intrinsic determinants of such organotropic metastasis, including genes and chemokine receptors expressed on cancer cells2. The adhesion and extracellular matrixc molecules, such as integrins, tenascin and periostin, have been also shown to promote colonization of metastatic cancer cells3. In 2005, Dr Lyden and colleagues proposed a term of pre-metastatic niche to describe the phenomenon that primary tumor could promote its own metastasis by recruiting bone marrow-derived cells to the distant organ and establish supportive metastatic environments4. Besides, tumor-derived soluble factors such as lysyl oxidase5 have been also reported to induce organ-specific metastasis by formation of pre-metastatic niche in certain sites. However, the exact mechanism for metastatic organotropism is still unclear. In recent years, tumor-derived exosomes have been demonstrated to promote cancer progression6. Exosomes are small membrane-bound vesicles (30-100 nm) containing functional biomolecules (including proteins, RNA, DNA and lipids) that can be horizontally transferred to recipient cells7. For example, brain astrocyte-derived exosomes can promote the outgrowth of brain metastatic cancer cells by transferring PTEN-targeting microRNA-19a to these cancer cells8. Nevertheless, whether molecules present on tumor exosomes can determine organ-specific metastasis is an unresolved question.Lyden and colleagues in their recent Nature paper gave the answer that tumor exosome integrins can determine organotropic metastasis by fusing with organ-specific resident cells to establish pre-metastatic niche through activating Src phosphorylation and pro-inflammatory S100 expression9 (Figure 1). The authors isolated exosomes from organotropic human and mouse breast and pancreatic cancer cell lines known to primarily metastasize to the lung, liver, or both9. Then, they retro-orbitally injected these near infrared (NIR) or red fluorescently labeled exosomes into nude mice and quantified exosome biodistribution and uptake in distant organs after 24 h by NIR whole-lung imaging and confocal microscopy. Using this approach, they observed that exosomes from different cancer models selectively interact with the same future metastatic organs as their cell of origin. Thus, the authors proposed that exosomes could promote organ-specific metastasis. To test exosome-mediated education of target organs functionally, they injected luciferase-expressing 4175-LuT (LuT, Lung-tropic) or 1833-BoT (BoT, bone-tropic) cells into 4175-LuT or 1833-BoT exosome-educated mice, and found that education with 4175-LuT-derived exosomes increased the lung metastatic capacity of 4175-LuT tumors, and interestingly, even significantly redirected the bone-tropic 1833-BoT cells to disseminate in the lung. These observations suggested that certain type of tumor exosomes can prepare pre-metastatic niches to facilitate organ-specific metastasis and redirect metastatic distribution even for cancer cells poorly capable of metastasizing to these sites.Open in a separate windowFigure 1Tumor exosomes direct organ-specific metastasis via integrins. Tumor-derived exosomes transport proteins, nucleic acids and lipids to specific organ and fuse with resident cells, which can prepare distant organ site as pre-metastatic niche. Lyden and colleagues9 report that exosomes derived from different type of cancer cells can display different integrin proteins on their surface; ITGα6β4- and ITGα6β1-expressing exosomes preferentially interact with fibroblasts and epithelial cells in lung, and ITGαvβ5-expressing exosomes preferentially fuse with Kupffer cells in liver. Once uptaken, tumor exosomes induce cellular changes (Src activation and pro-inflammatory S100 gene expression) in the target organ, thus promoting cancer cell colonization and organ-specific metastasis.To further dissect the molecular mechanisms involved in organ-specific metastasis, through quantitative mass spectrometry of lung-, liver- and brain-tropic exosomes, they identified integrins (ITGs) — the most highly represented cell adhesion receptor proteins in exosomes — as determinants of metastatic organotropism. Subsequent analysis showed that lung-tropic exosomes expressing ITGα6β4 and ITGα6β1 could interact with S100A4-positive fibroblasts and surfactant protein C-positive epithelial cells in laminin-rich lung microenvironments, ITGαvβ5-expressing pancreatic exosomes co-localized with F4/80+ macrophages and fused with Kupffer cells in fibronectin-rich liver niches, and brain-tropic 831-BrT exosomes interacted mainly with CD31+ brain endothelial cells. Furthermore, inhibiting the exosomal integrins ITGβ4 and ITGβ5 expression via short hairpin RNAs or blocking their binding by HYD-1/RGD peptides markedly reduced exosome uptake as well as lung and liver metastasis, respectively. Thus, the authors demonstrated that certain exosomal integrins govern organ-specific metastasis by fusing with target cells in an organ-specific manner. When using RNA sequencing to analyze the gene expression in distinct cells targeted by exosomes, they found that exosomal ITGs could prominently upregulate pro-inflammatory S100 gene expression (i.e., several S100 genes (S100A4, -A6, -A10, -A11, -A13 and -A16) were upregulated in 4175-LuT exosome-educated WI-38 fibroblasts; S100A8 and S100P were upregulated in BxPC-3-LiT exosome-educated Kupffer cells). Moreover, exosomal ITGβ4 uptake could increase Src or phosphorylated Src (pSrc) levels in resident cells. S100 proteins promote metastasis10, and ITGα6β4 can active Src and S100A4 expression11. Taken together, the mechanisms for exosomal integrins in promoting tumor organotropic metastasis in this Nature paper9 may be summarized as follows: (1) promotion of adhesion by fusing with specific resident cells; (2) activation of Src signaling pathways and inflammatory responses (pro-inflammatory S100 gene expression) in these target cells, thus preparing favorable pre-metastatic niche for further metastasis (Figure 1).Finally, their clinical data showed that ITGβ4 level is higher in exosomes from breast cancer patients with lung metastasis and increased exosomal ITGαv in pancreatic cancer patients who developed liver metastasis than in those without metastasis. These results indicated that exosomal integrins isolated from circulating plasma may be used as organotropism biomarkers to predict organ-specific metastasis in cancer patients.The study by Lyden and colleagues9 expands our understanding of the organ-specific metastasis mechanisms and also highlights a crucial role of exosomes in promoting tumor metastasis. Indeed, another recent work in Nature Cell Biology shows that pancreatic cancer exosomes can increase liver metastatic burden by transferring macrophage migration inhibitory factor (MIF) to Kupffer cells and by recruiting immune cells to initiate pre-metastatic niche formation in the liver12. Thus, strategies targeting these particular exosomal integrin molecules in this Nature paper9 may not be enough to prevent organ-specific metastasis. Besides, the limited integrin repertoire of bone-tropic exosomes identified by the proteome analysis calls for further investigation. This study also raises several intriguing questions: Do exosomal integrins have any effect on the recruitment of bone marrow-derived cells or immunosuppressive cells in priming pre-metastatic niche? What is the function of other exosome components such as RNA and DNA in determining organ-specific metastasis? Are these results universal to other type of cancer metastasis? Most importantly, how to translate this finding into clinical applications? Addressing these questions will help us unveil the mystery of organotropic metastasis.  相似文献   

19.

Objective

Platelets express the α2β1 integrin and the glycoprotein VI (GPVI)/FcRγ complex, both collagen receptors. Understanding platelet-collagen receptor function has been enhanced through use of genetically modified mouse models. Previous studies of GPVI/FcRγ-mediated collagen-induced platelet activation were perfomed with mice in which the FcRγ subunit was genetically deleted (FcRγ−/−) or the complex was depleted. The development of α2β1−/− and GPVI−/− mice permits side-by-side comparison to address contributions of these collagen receptors in vivo and in vitro.

Approach and Results

To understand the different roles played by the α2β1 integrin, the GPVI receptor or FcRγ subunit in collagen-stimulated hemostasis and thrombosis, we compared α2β1−/−, FcRγ−/−, and GPVI−/− mice in models of endothelial injury and intravascular thrombosis in vivo and their platelets in collagen-stimulated activation in vitro. We demonstrate that both the α2β1 integrin and the GPVI receptor, but not the FcRγ subunit influence carotid artery occlusion in vivo. In contrast, the GPVI receptor and the FcRγ chain, but not the α2β1 integrin, play similar roles in intravascular thrombosis in response to soluble Type I collagen. FcRγ−/− platelets showed less attenuation of tyrosine phosphorylation of several proteins including RhoGDI when compared to GPVI−/− and wild type platelets. The difference between FcRγ−/− and GPVI−/− platelet phosphotyrosine levels correlated with the in vivo thrombosis findings.

Conclusion

Our data demonstrate that genetic deletion of GPVI receptor, FcRγ chain, or the α2β1 integrin changes the thrombotic potentials of these platelets to collagen dependent on the stimulus mechanism. The data suggest that the FcRγ chain may provide a dominant negative effect through modulating signaling pathways in platelets involving several tyrosine phosphorylated proteins such as RhoGDI. In addition, these findings suggest a more complex signaling network downstream of the platelet collagen receptors than previously appreciated.  相似文献   

20.
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号