首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Second mitochondrial-derived activator of caspase (Smac), a mitochondrial protein, plays an important role in inducing cell apoptosis by activating caspases. After receiving apoptotic signals, mitochondria releases cytochrome c to induce the formation of caspase-9 activating apoptosome and releases Smac to counteract the inhibitory activity of IAPs. Mature Smac binds to human IAP family members and relieves their inhibition of caspases. In this study, the human osteosarcoma cell line Saos-2 was used to establish the apoptosis model. Smac expression during cell growth and its biological effects in inducing cell apoptosis  相似文献   

2.
With progressing recognition of apoptosis in bio-logical and medical sciences, the apoptotic signal transduction has rapidly become a dominant project to reveal the molecular mechanisms of apoptotic process. A lot of researches about apoptotic signal transduction have showed the expression of heat shock proteins was closely correlated with cell growth and differen-tiation, and involved in the regulation of apoptosis in different signal transduction pathways. Here we re-view the effects of hsps…  相似文献   

3.
Caspase family proteases and apoptosis   总被引:45,自引:0,他引:45  
Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin- 1 ~-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regu- lated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain, and Ca^2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.  相似文献   

4.
Yin XM 《Cell research》2000,10(3):161-167
Two major apoptosis pathways have been defined in mammalian cells,the Fas/TNF-R1 death receptor pathway and the mitochondria pathway.The Bcl-2 family proteins consist of both anti-apoptosis and pro-apoptosis members that regulate apoptosis,mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events.However,death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly,bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins.Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals.Activated Bid is translocated to mitochondria and induces cytochrome c release,which in turn activates downstream caspases.Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.  相似文献   

5.
Apoptosis can be triggered by a variety of stimuli including death factors, anti-cancer drugs and factor-deprivation. These apoptotic cells are swiftly phagocytosed by macrophages to prevent the release of noxious or inflammatory materials from dying cells. The molecular analysis of Fas ligand (a death factor)-induced apoptosis indicated that a cascade of proteases (caspases) is activated during this process, which eventually activates a specific DNase (caspase-activated DNase). CAD exists as a complex with its inhibitor (ICAD) in proliferating cells. When the cells are triggered to apoptosis, caspases, in particular caspase 3, in the downstream of the caspase cascade cleave ICAD, which releases CAD to cause DNA degradation in nuclei.  相似文献   

6.
Ren Y  Xiong L  Wu JR 《Cell research》2003,13(4):295-300
Tripchlorolide (TC) is a potent antitumor reagent purified from a Chinese herb Tripterygium Wilfordii Hook. f.. However, its cellular effects and mechanism of action are unknown. We showed here that TC induced apoptosis of Chinese Hamster Ovary (CHO) cells in time- and dose-dependent manners. TC resulted in the degradation of Bcl-2, the translocation of Bax from the cytosol to mitochondria, and the release of cytochrome c from mitochondria. Stable overexpression of human Bcl-2 could reduce the apoptosis of TC-treated cells by blocking the translocation of Bax and the release of cytochrome c. These results indicate that TC induces apoptosis of CHO cell by activating the mitochondrion-mediated apoptotic pathway involving the proteins of Bcl-2 family and cytochrome c.  相似文献   

7.
Xu  Yishi  Victorio  Carla Bianca Luena  Meng  Tao  Jia  Qiang  Tan  Yee-Joo  Chua  Kaw Bing 《中国病毒学》2019,34(3):262-269
Our previous work has shown that Saffold virus(SAFV) induced several rodent and primate cell lines to undergo apoptosis(Xu et al. in Emerg Microb Infect 3:1–8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2 B and 3 C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2 B protein is essential for the apoptotic activity and tetramer formation of the 2 B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins(the 2 B, 3 C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.  相似文献   

8.
We have developed a cell-free system that can trigger the nuclei purified from mouse liver and suspensioncultured carrot cells to undergo apoptosis as defined by the formation of apoptotic bodies and nucleosomal DNA fragments.The effects of different divalent cations and cycloheximide on DNA cleavage in this system were assessed.The fact that nuclei of plant cells can be induced to undergo apoptosis in a cell-free animal system suggests that animals and plants share a common signal transduction pathway triggering in the initiation stage of apoptosis.  相似文献   

9.
Keeble JA  Gilmore AP 《Cell research》2007,17(12):976-984
Most defective and unwanted cells die by apoptosis, cells without damaging the surrounding tissue. Once a an exquisitely controlled genetic programme for removing such cell has committed to apoptosis, the process is remarkably efficient, and is completed within a few minutes of initiation. This point of no retum for an apoptotic cell is commonly held to be the point at which the outer mitochondrial membrane is permeabilised, a process regulated by the Bcl-2 family of proteins. How these proteins regulate this decision point is central to diseases such as cancer where apoptotic control is lost. In this review, we will discuss apoptotic signalling and how a cell makes the irreversible decision to die. We will focus on one set of survival signals, those derived by cell adhesion to the extracellular matrix (ECM), and use these to highlight the complexities of apoptotic signalling. In particular, we will illustrate how multiple signalling pathways converge to determine critical cell fate decisions.  相似文献   

10.
The destruction of proteins in proteasomes is regulated at various levels. One of the early rate-limiting steps is "tagging" of proteins with ubiquitin, an 8 kD molecule that, when present in chains of four residues or more, serves as a signal recognized by proteasomal subunits. Ubiquitin is attached to target proteins by a series of enzymatic steps involving an El (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme), and E3 (ubiquitin protein ligase). It is the last enzyme that confers target protein specificity. We have found that members of a family of RING domain containing proteins with anti- apoptotic activity, IAPs,  相似文献   

11.
Inhibitor of apoptosis (IAPs) proteins are characterized by the presence of evolutionarily conserved baculoviral inhibitor of apoptosis repeat (BIR) domains, predominantly known for their role in inhibiting caspases and, thereby, apoptosis. We have shown previously that multi-BIR domain-containing IAPs, cellular IAPs, and X-linked IAP can control tumor cell migration by directly regulating the protein stability of C-RAF kinase. Here, we extend our observations to a single BIR domain containing IAP family member melanoma-IAP (ML-IAP). We show that ML-IAP can directly bind to C-RAF and that ML-IAP depletion leads to an increase in C-RAF protein levels, MAPK activation, and cell migration in melanoma cells. Thus, our results unveil a thus far unknown role for ML-IAP in controlling C-RAF stability and cell migration.  相似文献   

12.
BACKGROUND: Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All IAPs have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. IAPs physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. This allows them to function as sensors and inhibitors of death signals that emanate from a variety of pathways. RESULTS: Here we report the characterization of ML-IAP, a novel human IAP that contains a single BIR and RING finger motif. ML-IAP is a powerful inhibitor of apoptosis induced by death receptors and chemotherapeutic agents, probably functioning as a direct inhibitor of downstream effector caspases. Modeling studies of the structure of the BIR domain revealed it to closely resemble the fold determined for the BIR2 domain of X-IAP. Deletion and mutational analysis demonstrated that integrity of the BIR domain was required for anti-apoptotic function. Tissue survey analysis showed expression in a number of embryonic tissues and tumor cell lines. In particular, the majority of melanoma cell lines expressed high levels of ML-IAP in contrast to primary melanocytes, which expressed undetectable levels. These melanoma cells were significantly more resistant to drug-induced apoptosis. CONCLUSIONS: ML-IAP, a novel human IAP, inhibits apoptosis induced by death receptors and chemotherapeutic agents. The BIR of ML-IAP possesses an evolutionarily conserved fold that is necessary for anti-apoptotic activity. Elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the pathogenesis of this malignancy.  相似文献   

13.
Several human inhibitor of apoptosis (IAP) family proteins function by directly inhibiting specific caspases in a mechanism that does not require IAP cleavage. In this study, however, we demonstrate that endogenous XIAP is cleaved into two fragments during apoptosis induced by the tumor necrosis factor family member Fas (CD95). The two fragments produced comprise the baculoviral inhibitory repeat (BIR) 1 and 2 domains (BIR1-2) and the BIR3 and RING (BIR3-Ring) domains of XIAP. Overexpression of the BIR1-2 fragment inhibits Fas-induced apoptosis, albeit at significantly reduced efficiency compared with full-length XIAP. In contrast, overexpression of the BIR3-Ring fragment results in a slight enhancement of Fas-directed apoptosis. Thus, cleavage of XIAP may be one mechanism by which cell death programs circumvent the anti-apoptotic barrier posed by XIAP. Interestingly, ectopic expression of the BIR3-Ring fragment resulted in nearly complete protection from Bax-induced apoptosis. Use of purified recombinant proteins revealed that BIR3-Ring is a specific inhibitor of caspase-9 whereas BIR1-2 is specific for caspases 3 and 7. Therefore XIAP possesses two different caspase inhibitory activities which can be attributed to distinct domains within XIAP. These data may provide an explanation for why IAPs have evolved with multiple BIR domains.  相似文献   

14.
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.  相似文献   

15.
Inhibitors of apoptosis (IAPs) are crucial regulators of programmed cell death. The mechanism by which IAPs prevent apoptosis has previously been attributed to the direct inhibition of caspases. The function of mammalian IAPs is counteracted by cell death inducer second mitochondria-derived activator of caspases (Smac)/DIABLO during apoptosis. Here we show that cIAP1 and cIAP2 are E3 ubiquitin-protein isopeptide ligases (ubiquitin ligases) for Smac. cIAPs stimulate Smac ubiquitination both in vivo and in vitro, leading to Smac degradation. cIAP1 and cIAP2 associate with overlapping but distinct subsets of E2 (ubiquitin carrier protein) ubiquitin-conjugating enzymes. The substrate-dependent E3 activity of cIAPs is mediated by their RING domains and is dependent on the specific interactions between cIAPs and Smac. Similarly, Drosophila IAP1 also possesses ubiquitin ligase activity that mediates the degradation of the Drosophila apoptosis inducers Grim and HID. These results suggest a novel and conserved mechanism by which IAPs block apoptosis through the degradation of death inducers.  相似文献   

16.
Smac-DIABLO in its mature form (20.8 kDa) binds to baculoviral IAP repeat (BIR) domains of inhibitor of apoptosis proteins (IAPs) releasing their inhibitory effects on caspases, thus promoting cell death. Despite its apparent molecular mass (∼100 kDa), Smac-DIABLO was held to be a dimer in solution, simultaneously targeting two distinct BIR domains. We report an extensive biophysical characterization of the protein alone and in complex with the X-linked IAP (XIAP)-BIR2-BIR3 domains. Our data show that Smac-DIABLO adopts a tetrameric assembly in solution and that the tetramer is able to bind two BIR2-BIR3 pairs of domains. Our small-angle x-ray scattering-based tetrameric model of Smac-DIABLO/BIR2-BIR3 highlights some conformational freedom of the complex that may be related to optimization of IAPs binding.  相似文献   

17.
18.
The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of action of Reaper, Grim, Hid and Jafrac2. We find that these IAP-antagonists display differential and selective binding to specific DIAP1 BIR domains. Consistently, we show that each DIAP1 BIR region associates with distinct caspases. The differential DIAP1 BIR interaction seen both between initiator and effector caspases and within IAP-antagonist family members suggests that different IAP-antagonists inhibit distinct caspases from interacting with DIAP1. Surprisingly, we also find that the caspase-binding residues of XIAP predicted to be strictly conserved in caspase-binding IAPs, are absent in DIAP1. In contrast to XIAP, residues C-terminal to the DIAP1 BIR1 domain are indispensable for caspase association. Our studies on DIAP1 and caspases expose significant differences between DIAP1 and XIAP suggesting that DIAP1 and XIAP inhibit caspases in different ways.  相似文献   

19.
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance.  相似文献   

20.
Verhagen AM  Coulson EJ  Vaux DL 《Genome biology》2001,2(7):reviews3009.1-reviews300910
Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号