首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Relatively rapid methods for the determination of relative genome molecular mass (Mr) and the estimation of plasmid copy number have been developed. These methods are based on the ability of the Bio-Rad high-pressure liquid chromatography hydroxylapatite column to separate and quantify single-stranded DNA, double-stranded DNA, and plasmid DNA. Genome Mr values were calculated from reassociation kinetics of single-stranded DNA as measured with the hydroxylapatite column. Bacteriophage T4 DNA was used to establish a C0t (moles of nucleotides times seconds per liter), or standard reassociation value. From this C0t value, C0t values for Escherichia coli B, Beggiatoa alba B18LD, and Streptomyces coelicolor were determined by comparative calculations. From those calculated C0t values, the Mr values of 1.96 X 10(9) for E. coli, 2.02 X 10(9) for B. alba, and 3.28 X 10(9) for S. coelicolor were estimated. Plasmid concentration was determined from cleared lysates by comparing the integrated area under the phosphate buffer-eluted plasmid peak to values obtained with known amounts of plasmid. The plasmid copy number was estimated by multiplying the ratio between the amounts of plasmid and chromosomal DNA by the ratio between the Mr values of the chromosome and the plasmid. A copy number of 29 was obtained from a culture of E. coli HB101 harboring pBR322 grown to a culture density of 1.6 X 10(9) CFU . ml-1.  相似文献   

2.
Single-stranded, labeled deoxyribonucleic acid (DNA) fragments from Escherichia coli were incubated at 60 and 66 C with a large excess of single-stranded, unlabeled DNA fragments from E. coli and Salmonella typhimurium. The resulting reassociated DNA was adsorbed to hydroxylapatite and eluted in a series of washes at increasing temperatures. The thermal stability of the reassociated DNA was determined by means of this procedure. Neither the extent of reassociation nor stability of the reassociated E. coli DNA was affected by increasing the incubation temperature from 60 to 66 C. The double-stranded molecules resulting from the reassociation of E. coli DNA with S. typhimurium DNA had a markedly lower thermal stability than reassociated E. coli DNA. More reassociation occurred between E. coli and S. typhimurium at 60 C than at 66 C. In addition, the product of interspecies reassociation occurring at 66 C had a higher thermal stability than that occurring at 60 C. Preliminary results indicate that the decreased thermal stability of the interspecies duplex is in part the result of unpaired bases.  相似文献   

3.
High diversity in DNA of soil bacteria.   总被引:23,自引:7,他引:16       下载免费PDF全文
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
High diversity in DNA of soil bacteria   总被引:65,自引:0,他引:65  
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Distribution of repetitious sequences in chick nuclear DNA   总被引:7,自引:3,他引:4  
By an improved method of hydroxylapatite chromatography, the reassociated sequences of chick nuclear DNA were isolated, and their base composition analysed. By increasing the amount of reassociation, the G + C content of the renatured sequences decreased progressively to reach a mean value corresponding to that of the total DNA. In order to study the distribution of the families, or group of families having different amount of reassociation, DNA was fractionated by CsC1 density gradient centrifugation. Fractions having different G + C content were obtained, and their reassociation rates analysed. At high C(o)t value of renaturation (C(o)t=50) the amount of reassociated sequences included in the high or in the low buoyant density DNA fractions was approximately the same, but their G + C content was as expected different. At lower C(o)t values of renaturation (between C(o)t of 0.2 and the C(o)t of 10), the results indicated an heterogeneity of the repeated sequences in the A + T rich DNA fractions, as compared to the G + C rich ones.  相似文献   

6.
1. The genomic structure of a fish (Psetta maxima) and of a Tapeworm (Bothriocephalus), who form a close host-parasite association, was determined by reassociation kinetics experiments. 2. Spectrophotometric readings of single-stranded versus double-stranded DNA separated on hydroxylapatite columns after reassociation at Cot values ranging from 0.0001 to 10(5) allowed the drawing of the reassociation curves of both genomes. 3. Different fractions according to their degree of repetitivity were evidenced, and the relative amounts of repetitive versus single-copy sequences, as well as their complexity, were calculated. 4. It appears that the amount of non-repetitive DNA is lower in the Tapeworm than in its vertebrate host, although the complexity of these single-copy sequences is the same.  相似文献   

7.
A method for the equalization of double-stranded DNA concentrations in the mixture which may be used for equalizing double-stranded cDNA concentrations involves thermal denaturation of the double-stranded DNA mixture followed by reassociation. The initial reassociation rate is Vi = Ki.(single-stranded DNA)2, and by the end of the process the concentrations of the unreassociated molecules for different DNAs should be approximately equal. Using hydroxylapatite chromatography one can separate single-stranded DNAs from double-stranded DNAs and carry out complete single-stranded DNAs reassociation. The new ratio of different double-stranded DNA concentrations would be almost 1.  相似文献   

8.
The base composition of peanut (var. NC-17) DNA determined from thermal denaturation profiles showed an average guanine plus cystosine content of 34% which was in close approximation to 36% guanine plus cytosine calculated from the buoyant density. Buoyant density also indicated the absence of satellite DNA. The genome size, 2.0 × 109 base pairs, as determined by reassociation kinetics of the single copy DNA was close to the genome size determined by cytophotometry, 2.1 × 109 base pairs. Peanut DNA averaging 450 to 600 base pairs long, reassociated in phosphate buffer and fractionated by hydroxylapatite, indicated a DNA genome composition of 36% nonrepetitive or single copy DNA; reassociation in formamide and followed by optical methods indicated the repetitive DNA possesses highly repeated, intermediately repeated and rarely repeated components of DNA with DNA sequences repeated on the average about 38,000, 6,700, and 200 times each. Different criteria of reassociation in formamide revealed further subdivisions of these four separate components of DNA. The DNA of above mentioned NC-17 variety compared to Florigiant variety showed no differences in thermal denaturation profiles, buoyant density, or in genome size.  相似文献   

9.
The bacteriophage 0X174 origin for (+) strand DNA synthesis, when inserted in a plasmid, is in vivo a substrate for the initiator A protein, that is produced by infecting phages. The result of this interaction is the packaging of single-stranded plasmid DNA into preformed phage coats. These plasmid particles can transduce 0X-sensitive cells; however, the transduction efficiency depends strongly on the presence in the packaged DNA strand of an initiation signal for complementary strand DNA synthesis. A plasmid with the complementary (-) strand origin of 0X inserted in the same strand as the viral (+) origin transduces 50-100 times more efficient than the same plasmid without the (-) origin of 0X. The transduction efficiency of such a particle is comparable to the infection efficiency of the phage particle. It is shown that in this system the 0X (-) origin can be replaced by the complementary strand origins of the bacteriophages G4 and M13. We have used this system to isolate sequences, from E. coli plasmids (pACYC177, CloDF13, miniF and OriC) and from the E. coli chromosome that can function as initiation signals for the conversion of single-stranded plasmid DNA to double-stranded DNA. All isolated origins were found to be dependent for their activity on the dnaB, dnaC and dnaG proteins. We conclude that these signals were all primosome-dependent origins and that primosome priming is the major mechanism for initiation of the lagging strand DNA synthesis in E. coli. The assembly of the primosome depends on the sequence-specific interaction of the n' protein with single-stranded DNA. We have used the isolated sequences to deduce a consensus recognition sequence for the n' protein. The role of a possible secondary structure in this sequence is discussed.  相似文献   

10.
Purification of a RecA protein analogue from Bacillus subtilis   总被引:29,自引:0,他引:29  
We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.  相似文献   

11.
Are single-stranded circles intermediates in plasmid DNA replication?   总被引:38,自引:7,他引:31       下载免费PDF全文
Plasmid pC194 exists as circular double-stranded and single-stranded DNA in Bacillus subtilis and Staphylococcus aureus. We report here that the plasmid pHV33, composed of pBR322 and pC194, exists as double- and single-stranded DNA in Escherichia coli, provided that the replication functions of pC194 are intact. Single-stranded pHV33 DNA is converted to double-stranded DNA by complementary strand synthesis probably initiated at rriB, a primosome assembly site present on pBR322. The efficiency of complementary strand synthesis affects the double-stranded copy number, which suggests that single-stranded DNA is a plasmid replication intermediate.  相似文献   

12.
A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13 delta lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.  相似文献   

13.
The reassociation kinetics of human DNA was studied, utilizing S1 nuclease digestion in aqueous dioxane and hydroxyapatite chromatography for isolating renatured DNA. The percentage of DNA reassociated at C0t = 10(-3) was 5--7% and that at C0t = 18 000 was about 85%, C0t being the product of the molar concentration of DNA and the reassociation period in s. The shape of the amended reassociation curve was roughly that of a rectangular hyperbola. It showed pronounced differences from the curves obtained by direct hydroxyapatite chromatography of reassociated DNA. The S1 nuclease-dioxane procedure offered two advantages over the conventional method. It was applicable to the study of reassociation with high molecular weight DNA, and the reassociated DNA so obtained was devoid of low-melting strands. The analysis of the new data took into account the possible effects of the diploid condition on the reassociation rate of DNA, the source of the DNA used in this study being placental tissue. The new reassociation profile was compared to ideal second-order reassociation curves calculated for the human genome (2.5 . 10(9) nucleotide pairs), and for a genome twice this size, containing various proportions of single-copy sequences. The results showed that approximately 85--90% of th total DNA may consist of unique sequences. This estimate is considerably higher than those reported previously.  相似文献   

14.
Real-time QPCR based methods for determination of plasmid copy number in recombinant Escherichia coli cultures are presented. Two compatible methods based on absolute and relative analyses were tested with recombinant E. coli DH5alpha harboring pBR322, which is a common bacterial cloning vector. The separate detection of the plasmid and the host chromosomal DNA was achieved using two separate primer sets, specific for the plasmid beta-lactamase gene (bla) and for the chromosomal d-1-deoxyxylulose 5-phosphate synthase gene (dxs), respectively. Since both bla and dxs are single-copy genes of pBR322 and E. coli chromosomal DNA, respectively, the plasmid copy number can be determined as the copy ratio of bla to dxs. These methods were successfully applied to determine the plasmid copy number of pBR322 of E. coli host cells. The results of the absolute and relative analyses were identical and highly reproducible with coefficient of variation (CV) values of 2.8-3.9% and 4.7-5.4%, respectively. The results corresponded to the previously reported values of pBR322 copy number within E. coli host cells, 15-20. The methods introduced in this study are convenient to perform and cost-effective compared to the traditionally used Southern blot method. The primer sets designed in this study can be used to determine plasmid copy number of any recombinant E. coli with a plasmid vector having bla gene.  相似文献   

15.
G Lavelle  C Patch  G Khoury    J Rose 《Journal of virology》1975,16(4):775-782
Single-stranded fragments of adenovirus type 2 DNA were isolated from infected KB cells under conditions which retarded reassociation of complementary sequences but did not denature native viral DNA. Of the total intracellular, virus-specific DNA labeled during a 1-h pulse with tritiated thymidine begining 15 h after infection, about 20% was single stranded when fractionated on hydroxylapatite. This DNA shifted predominantly to the double-stranded fraction on hydroxylapatite during an extended chase incubation, suggesting that it may represent single-stranded DNA in replicating intermediates. Furthermore, the single-stranded DNA annealed nearly equally to both strands of the adenovirus genome. These findings indicate that at least portions of both complementary strands of adenovirus type 2 DNA are exposed as single strands during the period of viral DNA synthesis.  相似文献   

16.
L Oskam  G Venema  S Bron 《Plasmid》1992,28(1):70-79
We studied the effects of temperature on the segregational stability of derivatives of the rolling-circle-type plasmid pTB913 in Bacillus subtilis. This 4.5-kb plasmid is a deletion derivative of pTB19, which was originally isolated from a thermophilic Bacillus. pTB913 derivatives carrying large inserts or lacking the minus origin for complementary strand synthesis were segregationally unstable at 37 degrees C. In contrast, at 47 degrees C all pTB913 derivatives tested were stably maintained in B. subtilis. The increased stability at 47 degrees C was attributed, at least partly, to increased copy numbers at this temperature. Although considerable amounts of single-stranded and high-molecular-weight plasmid DNA were formed at 47 degrees C, these products did not reduce plasmid stability at this temperature. The increased stability and increased copy number of pTB913 at elevated temperatures extend the use of this plasmid as a cloning vector in B. subtilis and other bacilli.  相似文献   

17.
RecA protein, which is essential for genetic recombination in Escherichia coli, was extensively purified from a strain of E. coli which contained the recA gene cloned in a plasmid (Sancar, A., and Rupp, W. D. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3144-3148). Using the DNA-dependent ATPase activity of recA protein as an assay, we obtained about 60 mg of purified recA protein from 100 g of cells. Ten micrograms or 1 microgram of the purified protein exhibited only one detectable band with Mr approximately = 40,000 upon sodium dodecyl sulfate-acrylamide gel electrophoresis. More than 99% of the ATPase activity of purified recA protein was dependent on single-stranded DNA. Purified recA protein had no detectable DNase, topoisomerase, or ligase activities. The enzyme was stable for a least a year when stored at 0-4 degrees C. The half-life of the ATPase activity of 25 microM recA protein was 37 min at 51 degrees C. Purified recA protein binds to single-stranded and double-stranded DNA, unwinds duplex DNA by a mechanism that is stimulated by single-stranded DNA or oligonucleotides, and pairs homologous single strands with duplex DNA.  相似文献   

18.
To develop analytical methodology to assess the genetic complexity of a DNA sample, capillary electrophoresis with laser-induced fluorescence detection is used to monitor the annealing process of DNA samples. Coated columns are filled with an entangled polymer solution shown to optimally separate DNA through size-selective capillary electrophoresis. DNA samples are denatured by heating in a boiling water bath for approximately 10 min and then cooled to approximately 25 degrees C below the melting point of the DNA sample to initiate the reassociation process. The DNA is detected by means of the laser-induced fluorescence of intercalated ethidium bromide, which produces a substantially greater signal for double- versus single-stranded DNA. The rate of reassociation is dependent upon the rate at which complimentary strands of DNA encounter each other and the degree of repeating base sequences in the sample (hence, the diversity of the DNA). Experimental parameters also influence the reassociation rate. The effects of salt concentration and incubation temperature are presented. Traditional plots of C(o)t (C(o) = DNA concentration and t = reassociation time) versus % recovery of double-stranded DNA signal are generated for PhiX 174 Hae III digest and 50 bp stepladder DNA, individually and combined, to calculate the reassociation rate constants for these samples. Because reassociation of individual fragments is observed by the CE-LIF method, more information about the samples is available than with less specific and time-consuming traditional methods of investigating DNA reassociation.  相似文献   

19.
A single-stranded DNA-binding protein (SSB) affinity column was prepared by optimizing the coupling of Escherichia coli single-stranded DNA-binding protein to Affi-Gel 10. The bound SSB retained its ability to specifically bind single-stranded DNA. When nuclease-treated cell extracts were incubated with the SSB beads overnight at 4 degrees C, a major protein of Mr = 25,000 was bound. At shorter incubation times, two additional proteins of Mr = 32,000 and 36,000 were also detected. In the absence of nuclease treatment, eight additional proteins ranging from Mr = 14,000 to 160,000 also bound to the affinity column. The major Mr = 25,000 protein has been shown to be a folded chromosome-associated protein. Its binding to SSB is strongly enhanced by the addition of DNA polymerase III or DNA polymerase III holoenzyme.  相似文献   

20.
A small circular DNA was found extrachromosomally in a clone of F9 embryonal carcinoma (EC) cells at high copy numbers per cell. The DNA was cloned in plasmid pUC19. Restriction endonuclease analyses of the DNA indicated that the DNA (fPyF9) was a mutant of polyomavirus (Py) DNA and had a mutation in a noncoding regulatory region. There have been many reports on the isolation of Py mutants capable of replication in undifferentiated cells. However, fPyF9 was different from other Py mutants in the following aspects: it was harbored stably as a free copy at 1 X 10(4) to 5 X 10(4) copies per cell in EC cells; it replicated in undifferentiated cells better than in differentiated cells; it was extremely rearranged in the sequences of the enhancer B domain; and it carried in the enhancer B domain three copies of an exogenous sequence which does not exist in Py strain A2. From these observations, we propose a new class of Py EC mutant which has an autonomous state similar to that of plasmid and small circular DNA in host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号