首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three years of pollen trapping data from Barro Colorado Island, Panama, are compared with local vegetation inventories. Two hypotheses relating pollen representation to ‘messy’ pollination and flower form are tested. Dioecious taxa were found to be over‐represented in pollen spectra compared with their occurrence in local forests. Similarly, anemophilous and ‘messy’ pollination types were found to be over‐represented. While anemophilous taxa were the best dispersed pollen types, zoophilous taxa were also well‐represented in dispersal classes of 20–40 m and > 40 m. Thus pollen arriving to lake sediments is most likely to be from anemophilous species or those zoophilous species exhibiting ‘messy’ pollination syndromes. Pollination mechanisms will predictably bias the fossil record against certain flower morphologies. These data are of significance to those using the fossil pollen record to reconstruct the timing and sequence of angiosperm evolution. These data help prioritize plants to be included in modern pollen reference collections and to focus the search for ‘unknown’ types on most‐likely candidate families.  相似文献   

2.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

3.
The functional floral morphology of the three genera of Vivianiaceae (= Ledocarpaceae, Geraniales), Rhynchotheca, Viviania and Balbisia, is compared. Likely pollination mechanisms are inferred from morphology and field observations. The flowers of Viviania are nectariferous and apparently zoophilous with nectar as the (primary) pollinator reward. Balbisia has pollen flowers without nectaries, its showy corolla indicates that it is also zoophilous with pollen as sole pollinator reward; bees were observed as flower visitors. One taxon (B. gracilis) may be anemophilous. Rhynchotheca has flowers without petals, with large, pendulous anthers and lacks nectaries. It shows synchronous mass flowering in its natural populations and is evidently anemophilous. A comparison with other Geraniales shows that nectar flowers with small anthers are likely the ancestral condition in Vivianiaceae. This suggests that the pollen flowers with larger anthers of Balbisia and Rhynchotheca may represent an apomorphic condition. The documentation of pollen flowers and anemophily in Vivianiaceae expands the range of known floral and pollination syndromes in Geraniales.  相似文献   

4.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

5.
Members of the Chenopodiaceae are the most dominant elements in the central Asian desert. The different genera and species within this family are common in desert vegetation types. Should it prove possible to link pollen types in this family to specific desert vegetation, it would be feasible to trace vegetation successions in the geological past. Nevertheless, the morphological similarity of pollen grains in the Chenopodiaceae rarely permits identification at the generic level. Although some pollen classifications of Chenopodiaceae have been proposed, none of them tried to link pollen types to specific desert vegetation types in order to explore their ecological significance. Based on the pollen morphological characters of 13 genera and 24 species within the Chenopodiaceae of eastern central Asia, we provide a new pollen classification of this family with six pollen types and link them to those plant communities dominated by Chenopodiaceae, for example, temperate dwarf semi‐arboreal desert (Haloxylon type), temperate succulent halophytic dwarf semi‐shrubby desert (Suaeda, Kalidium, and Atriplex types), temperate annual graminoid desert (Kalidium type), temperate semi‐shrubby and dwarf semi‐shrubby desert (Kalidium, Iljini, and Haloxylon types), and alpine cushion dwarf semi‐shrubby desert (Krascheninnikovia type). These findings represent a new approach for detecting specific desert vegetation types and deciphering ecosystem evolution in eastern central Asia.  相似文献   

6.
Studies on foraging partitioning in pollinators can provide critical information to the understanding of food‐web niche and pollination functions, thus aiding conservation. Metabarcoding based on PCR amplification and high‐throughput sequencing has seen increasing applications in characterizing pollen loads carried by pollinators. However, amplification bias across taxa could lead to unpredictable artefacts in estimation of pollen compositions. We examined the efficacy of a genome‐skimming method based on direct shotgun sequencing in quantifying mixed pollen, using mock samples (five and 14 mocks of flower and bee pollen, respectively). The results demonstrated a high level of repeatability and accuracy in identifying pollen from mixtures of varied species ratios. All pollen species were detected in all mocks, and pollen frequencies estimated from the number of sequence reads of each species were significantly correlated with pollen count proportions (linear model, R2 = 86.7%, p = 2.2e?16). For >97% of the mixed taxa, pollen proportion could be quantified by sequencing to the correct order of magnitude, even for species which constituted only 0.2% of the total pollen. In addition, DNA extracted from pollen grains equivalent to those collected from a single honeybee corbicula was sufficient for genome‐skimming. We conclude that genome‐skimming is a feasible approach to identifying and quantifying mixed pollen samples. By providing reliable and sensitive taxon identification and relative abundance, this method is expected to improve our understanding in studies that involve plant–pollinator interactions, such as pollen preference in corbiculate bees, pollen diet analyses and identification of landscape pollen resource use from beehives.  相似文献   

7.
Aim  To demonstrate that incorporating the bioclimatic range of possible contributor plants leads to improved accuracy in interpreting the palaeoclimatic record of taxonomically complex pollen types.
Location  North Tropical Africa.
Methods  The geographical ranges of selected African plants were extracted from the literature and geo-referenced. These plant ranges were compared with the pollen percentages obtained from a network of surface sediments. Climate-response surfaces were graphed for each pollen taxon and each corresponding plant species.
Results  Several patterns can be identified, including taxa for which the pollen and plant distributions coincide, and others where the range limits diverge. Some pollen types display a reduced climate range compared with that of the corresponding plant species, due to low pollen production and/or dispersal. For other taxa, corresponding to high pollen producers such as pioneer taxa, pollen types display a larger climatic envelope than that of the corresponding plants. The number of species contained in a pollen taxon is an important factor, as the botanical species included in a taxon may have different geographical and climate distributions.
Main conclusions  The comparison between pollen and plant distributions is an essential step towards more precise vegetation and climate reconstructions in Africa, as it identifies taxa that have a high correspondence between pollen and plant distribution patterns. Our method is a useful tool to reassess biome reconstructions in Africa and to characterize accurately the vegetation and climate conditions at a regional scale, from pollen data.  相似文献   

8.
Aim The objective of this paper is to explore the relationships that exist between vegetation and modern pollen rain in the open, largely treeless landscape of subarctic Greenland. The implications of these results for the interpretation of fossil pollen assemblages from the time of the Norse landnám are then examined. Location The study area is the sheep farming district of Qassiarsuk in the subarctic, subcontinental vegetational and climatic zone of southern Greenland (61° N, 45° W). Between c.ad 1000–1500 this region was contained within the Norse Eastern Settlement. Methods Detrended Correspondence Analysis (DCA) of harmonized plant–pollen data sets is used to compare plant cover in 64 vegetation quadrats with pollen assemblages obtained from moss polsters at matching locations. Presence/absence data are also used to calculate indices of association, over‐ and under‐representation for pollen types. Results Good correspondence between paired vegetation–pollen samples occurs in many cases, particularly in locations where Salix glaucaBetula glandulosa dwarf shrub heath is dominant, and across herbaceous field boundaries and meadows. Pollen samples are found to be poor at reflecting actual ground cover where ericales or Juniperus communis are the locally dominant shrubs. Dominant or ubiquitous taxa within this landscape (Betula, Salix and Poaceae) are found to be over‐represented in pollen assemblages, as are several of the ‘weeds’ generally accepted as introduced by the Norse settlers. Main conclusions Due to their over‐representation in the pollen rain, many of the Norse apophytes and introductions (e.g. Rumex acetosa and R. acetosella) traditionally used to infer human activity in Greenland should be particularly sensitive indicators for landnám, allowing early detection of Norse activity in fossil assemblages. Pteridophyte spores are found to be disassociated with the ground cover of ferns and clubmosses, but are over‐represented in pollen assemblages, indicating extra‐local or regional sources and long residence times in soil/sediment profiles for these microfossils. A pollen record for Hordeum‐type registered in close proximity to a field containing barley suggests that summer temperatures under the current climatic regime are, at least on occasion, sufficient to allow flowering.  相似文献   

9.
Aim To analyse the relationships between potential natural vegetation, pollen and climate in order to improve the interpretation of fossil pollen records and provide the background for future quantitative palaeoclimatic reconstructions. Location Pampa grasslands of Argentina, between 33–41° S and 56–67° W. Methods Modern pollen data were obtained from a pollen data base developed by the Grupo de Investigación de Paleoecología y Palinología, Universidad Nacional de Mar del Plata, Argentina (143 surface samples and 17 pollen types). Analysis of pollen and climate data involved multivariate statistics (cluster analysis and principal components analysis), scatter diagrams, Pearson’s correlation and isopoll mapping. Results Vegetation patterns at regional scales (grasslands and xerophytic woodlands) and local scales (edaphic communities) were identified by cluster analysis of pollen surface samples. The main climatic variables that appear to constrain the vegetation distribution and abundance of taxa are mean annual precipitation, annual effective precipitation and summer temperature. Individual pollen types such as Chenopodiaceae, Apiaceae, Cyperaceae, Prosopis, Schinus, Condalia microphylla and other xerophytic taxa are good indicators of moisture regime. Many pollen types are significantly correlated with summer temperature. The modern vegetation–pollen–climate relationships vary in a broadly predictable manner, supporting the contention that fossil pollen assemblages can be related to particular climatic characteristics. Main conclusions An expanded suite of modern analogues facilitated new insights into vegetation–pollen–climate relationships at the regional scale in Pampa grasslands. Relationships between individual pollen types and climate are appraised at a regional scale and new modern analogues are presented. The results provide the basis for improved vegetation and climate reconstruction from fossil records of the study area.  相似文献   

10.
Aims To quantify pollen–vegetation relationships from saline to freshwater in an estuarine gradient from surface samples of the modern pollen rain, to allow more accurate interpretations of the stratigraphic palynological record. Location Whangapoua Estuary, Great Barrier Island, northern New Zealand. Methods Six transects were laid out along a vegetation sequence running from estuarine mud to freshwater swamp. Along these transect lines, 108 plots were sampled for vegetation and surface sediments from wet sand, mud, plant litter or moss (sand and mud sites are inundated by most tides, other sites less frequently). All sediment samples were analysed for pollen. The relationships between plant species frequency and pollen representation were examined at a community scale using twinspan and ordination analyses, and for individual species using fidelity and dispersibility indices, regression and box‐plot analyses. Results The quantitative relationships between source taxon vegetation frequency and its pollen representation varied between species due to differential pollen production and dispersal. twinspan of the surface pollen samples suggests five vegetation types: (A) mangrove (Avicennia marina); (C) Leptocarpus similis salt meadow; (D) Baumea sedges; (E) Leptospermum shrubland; and (F) Typha/Cordyline swamp forest. The (B) Juncus kraussii community is not represented palynologically owing to the destruction of its delicate pollen grains during acetolysis of samples. Detrended correspondence analysis places these communities on an estuarine‐to‐freshwater gradient. However, pollen assemblages at the seaward end of the salinity gradient are less clearly representative of the associated vegetation than those at the landward end, probably because the open vegetation at the former allows the influx of wind‐ and water‐dispersed pollen from surrounding vegetation. Main conclusions The vegetation pattern (zonation) at Whangapoua is reflected in the pollen rain. When the long‐distance and over‐represented pollen types are excluded, five out of six of the broad vegetation communities can be identified by their pollen spectra. Species with high fidelity and low‐to‐moderate dispersibility indices can be used to identify the vegetation types in the sedimentary sequences. The more open vegetation types at the ‘marine end’ of the sequence tend to be ‘overwhelmed’ by regional pollen, but the nature of the sediments and the presence of discriminatory species (e.g. A. marina, Plagianthus divaricatus, Cordyline australis), even in small amounts, will allow correct identification of the local vegetation represented in sedimentary palynological sequences. A box‐plot analysis indicates that the pollen and spore types A. marina (mangroves), Sarcocornia quinqueflora (salt meadow), P. divaricatus (sedges), Gleichenia (shrubland) and C. australis (swamp forest) are highly discriminatory in relation to vegetation type. These discriminatory palynomorphs help with the interpretation of stratigraphic pollen studies. However, salt marsh vegetation communities in the sediments must be interpreted with caution as the marine sediments are easily affected by erosion, bioturbation and tidal inundation effects.  相似文献   

11.
A set of mathematical models is developed to describe the relationship between the sizes of pollen grains and female receptors which result in maximum anemophilous pollen transfer. The models predict anemophilous plants should have Stokes numbers in the range of 1.0 to 2.72. The Stokes number is a function of both pollen size and effective receptive surface size. The models were tested with data gathered for 28 assumed anemophilous species and 20 known zoophilous species. The models identify anemophily with an accuracy of approximately 75%. If pollen size alone is used to determine anemophily, then accuracy drops to only 50%. The Stokes number criterion reported here could help in the determination of anemophily of extant and fossil plant taxa.  相似文献   

12.
Pollen was analysed from bat guano from nine caves in southeastern Spain and surface soils in their immediate surroundings. We compare the pollen spectra of 34 modern dung samples from the nine caves with one modern surface pollen sample from each cave. The contents suggest reasonable pollen diversity and richness, including anemophilous and zoophilous pollen types. Since the latter is usually under-represented in atmospheric pollen, the guano spectra therefore appear to reflect the vegetation more effectively than normal surface soil samples. Despite health hazards such as histoplasmosis, the difficulties of obtaining bat guano in deep caves and possible interpretational concerns relating to behaviour and feeding habits of different bat species, this material can be very useful in palaeoecological research provided that the dung was fossilized under favourable environmental conditions that allowed the preservation of pollen.  相似文献   

13.
A total of 31 suface sediment samples were collected from West Kunlun Mountain in south Xinjiang Autonomous Region in northwest China. These samples are from seven types of vegetation: Picea schrenkiana Fisch. et Mey. forest, Sabina Spach. woodland, sub-alpine steppe, alpine meadow, desert vegetion, cushion-vegetation and vegetation adjancent to glaciers. Pollen percentages and pollen concentrations were calculated in all samples. The dominant pollen types in the region are Chenopodiaceae, Artemisia, Picea, Ephedra, Gramineae, Cyperaceae, Rosaceae, Leguminosae, Compositae etc. In order to reveal the relationship between pollen composition and the vegetation type from which the soil sample was collected, principal component analysis and group average cluster analysis were employed on the pollen data. The results revealed that the major vegetation types in this region could be distinguished by pollen composition: a. Samples from desert vegetation were dominated by pollen of Chenopodiaceae (about 60195%). The percentages of all other pollen types were low. b. Picea forest samples were rich in Picea pollen (about 20%) Sabina forest had more Sabina pollen grains than other vegetation types (about 5%, others <1%). Pollen percentages of Artemisia, Chenopodiaceae and Ephedra were comparatively higher (each about 20%) in these samples from the two types of vegetations. C. Pollen percentages of Artemisia, Cyperaceae, Gramineae and Chenopodiaceae were high in both sub-alpine steppe and alpine meadow. But steppe containal more Artemisia and Chenopodiaceae (steppe 33.75% and 32.30%, meadow 15.57% and 19.48% in average), less Cyperaceae and Gramineae (steppe 2.58% and 7.60%, meadow 22.35% and 12.93% in average) than meadow. d. Samples from cushion-vegetation and vegetation adjacent to glaciers were mainly composed of pollen grains transported from other sites. It was not easy to distinguish them from other vegetation types. Principal component analysis and cluster analysis distinguish samples from Picea forest, Sabina woodland, sub-alpine steppe, alpine meadow and desert vegetation. Therefore we think it will be possible to apply the module to reconstruct past vegetation in this region and other similar regions. Regression analysis was also applied to reveal the relationships between pollen and plant percentages of Artemisia, Chenopodiaceae, Cyperaceae and Gramineae. The results indicated that a linear relationship existed between pollen and plant percentages for Artemisia, Chenopodiaceae and Cyperaeeae.  相似文献   

14.
Studies of modern pollen rain from remote islands have raised a number of interesting issues concerning the spatial precision of present‐day pollen spectra in relation to their parent plant community types. This paper examines the relationships and degree of correlation between a sequence of contemporary vegetation types, environments and their associated surface pollen spectra from a transect across the island of South Uist in the Outer Hebrides of Scotland. Paired data on both contemporary vegetation and associated surface pollen assemblages have been collected and analysed using methods of numerical classification and ordination. In general terms, the modern pollen rain on South Uist reflects the major changes in vegetation pattern and the major community types fairly closely. The major boundary between the alkaline machair sand dune communities and the various acidic upland vegetation types is particularly clear. However, both variability in the vegetation and the effects of the strong prevailing westerly and south‐westerly winds tend to blur the boundaries of the various communities within each of these larger categories. On average 86.6% of the palynomorphs come from in‐community quadrat sources, while only 1.3% are from off‐island sources. The limited present‐day tree distribution on the transect is discussed in the context of the more widespread distribution of arboreal pollen. Overall, there is a strong numerical correspondence between vegetation, pollen and environmental variables. The various problems inherent in examining surface pollen spectra are reviewed.  相似文献   

15.
Aim To understand better the representation of arctic tundra vegetation by pollen data, we analysed pollen assemblages and pollen accumulation rates (PARs) in the surface sediments of lakes. Location Modern sediment samples were collected from seventy‐eight lakes located in the Arctic Foothills and Arctic Coastal Plain regions of northern Alaska. Methods For seventy of the lakes, we analysed pollen and spores in the upper 2 cm of the sediment and calculated the relative abundance of each taxon (pollen percentages). For eleven of the lakes, we used 210Pb analysis to determine sediment accumulation rates, and analysed pollen in the upper 10–15 cm of the sediment to estimate modern PARs. Using a detailed land‐cover map of northern Alaska, we assigned each study site to one of five tundra types: moist dwarf‐shrub tussock‐graminoid tundra (DST), moist graminoid prostrate‐shrub tundra (PST) (coastal and inland types), low‐shrub tundra (LST) and wet graminoid tundra (WGT). Results Mapped pollen percentages and multivariate comparison of the pollen data using discriminant analysis show that pollen assemblages vary along the main north–south vegetational and climatic gradients. On the Arctic Coastal Plain where climate is cold and dry, graminoid‐dominated PST and WGT sites were characterized by high percentages of Cyperaceae and Poaceae pollen. In the Arctic Foothills where climate is warmer and wetter, shrub‐dominated DST, PST and LST were characterized by high percentages of Alnus and Betula pollen. Small‐scale variations in tundra vegetation related to edaphic variability are also represented by the pollen data. Discriminant analysis demonstrated that DST sites could be distinguished from foothills PST sites based on their higher percentages of Ericales and Rubus chamaemorus pollen, and coastal PST sites could be distinguished from WGT sites based on their higher percentages of Artemisia. PARs appear to reflect variations in overall vegetation cover, although the small number of samples limits our understanding of these patterns. For coastal sites, PARs were higher for PST than WGT, whereas in the Arctic Foothills, PARs were highest in LST, intermediate in DST, and lowest in PST. Main conclusion Modern pollen data from northern Alaska reflect patterns of tundra vegetation related to both regional‐scale climatic gradients and landscape‐scale edaphic heterogeneity.  相似文献   

16.
Aim To establish the relationship between coastal dune vegetation and its pollen representation as an aid to interpret Holocene vegetation dynamics and environmental changes from pollen assemblages. Location The study area is situated on the temperate Atlantic coast of south Buenos Aires Province, Argentina (c. 39° S and 61°20′ W). Methods The vegetation of the active dune area adjacent to the beach was described on the basis of its floristic composition from 25 plots. Classification of the vegetation into distinct zones was carried out by cluster analysis. Surface samples were collected from each vegetation stand and analysed for their pollen composition. Pollen percentage data were analysed using principal components analysis in order to investigate the degree to which the different vegetation units can be distinguished by their pollen spectra. Pollen–vegetation relationships for selected taxa were explored using simple scatter plots and indices of association, under‐ and over‐representation. Indices of floristic diversity and palynological richness were used to assess the representation of the vegetation in the pollen spectra. Results and conclusions Five vegetation zones are defined on the basis of species composition and their quantitative variation: back shore, mobile dunes, slacks, semi‐fixed and fixed dunes. Pollen assemblages from back shore, mobile dunes and slacks are clearly differentiated from semi‐fixed and fixed dunes. Pollen assemblages differ considerably from the associated vegetation composition. Major discrepancies are caused by large differences in pollen and vegetation proportion of Hyalis argentea and Discaria americana. There is a considerable proportion of non‐local pollen in every spectrum. Pollen representation in the coastal dunes at Monte Hermoso is influenced by differences in pollen production, dispersal and preservation of individual taxa as well as by the spatial distribution of the vegetation, the topography of the dune system and the wind pattern. The pollen–vegetation relationship established in this study has important implication for understanding and interpreting fossil pollen records from coastal dune environments.  相似文献   

17.
Abstract

The article aims at presenting some aspects of environmental reconstruction through pollen analysis from archaeological contexts. The anthropogenic pollen transport into archaeological sites is regarded as an interesting tool to improve knowledge on flora and vegetation in the area of influence of sites. The zoophilous plants can be found more easily than in the regional airborne pollen rain where anemophilous pollen is generally overrepresented. Moreover, pollen from archaeological contexts is mainly a result of the cultural landscape shaped by human activities. Two case studies from the Bradano Valley (Basilicata, southern Italy), rich in archaeological sites dating altogether from the Middle Bronze Age to the Medieval age, are reported. Difesa San Biagio and its surroundings is one of the biggest settlements of the area, settled in early times by Enotrians. Altojanni is an extended area mainly frequented in Hellenistic, Roman late Imperial and Medieval times. A very open landscape, and clear signs of plant exploitation and cultivation, breeding and settlements were present in the two sites. Though samples are disturbed and preservation problems are sometimes observed, the main characters of pollen spectra are recurrent. High percentages of Poaceae and Cichorioideae, together with coprophilous fungal spores, strongly suggest a long tradition of pastoral activities. These case study examples suggest that human activities would have produced a fairly xeric environment.  相似文献   

18.
Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north–south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single‐tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site‐specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition.  相似文献   

19.
The large majority of angiosperm species depend on animals for pollination, including many agricultural crops, and plant‐pollinator interactions have been extensively studied. However, not all floral visitors actually transfer pollen, and efforts to distinguish true pollinators from mere visitors are particularly scarce among the bat pollination literature. To determine whether Old World bat species are equally effective pollinators in mixed‐agricultural areas of southern Thailand, we examined six night‐blooming plant taxa and quantified pollinator importance (PI) of seven common nectarivorous bat species. PI was calculated as the product of nightly bat visitation rate (obtained from mist‐netting data) and pollen transfer efficiency (estimated from bat pollen loads). We found that PI varied by both bat species and plant species. In general, the nectar‐specialist bat species were more important pollinators, yet their order of importance differed across our focal plant species. In addition, PI was dictated more by pollen transfer effectiveness than visitation rate. Our findings highlight the importance of Old World bat pollinators within southern Thailand's mixed‐agricultural landscape and illustrate how seemingly similar floral visitors can have very different contributions toward plant pollination success.  相似文献   

20.
Abstract

Dioecy ensures cross pollination but pollen must travel from male to female plants, sometimes covering long distances. The present study concerns the reproductive strategy of two Italian dioecious plants: Mercurialis annua L. and Bryonia dioica L. The former is anemophilous and the latter is entomophilous; the latter has nectar and pollen as rewards. The distribution of pollen grains on the stigma is very different in the two species, reflecting the different types of pollination. In both species there is a number-dependent mechanism of pollen germination on the stigma. This mechanism could enhance male gametophytic competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号