首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gnamptogenys moelleri nests in bromeliads and feeds on an array of food items, including dead and live animals, and nectar. Field data in Brazilian forests indicate that G. moelleri hunts solitarily, while retrieving is performed both by solitary workers for small items, or by a group of recruited workers for large items. This flexible foraging strategy was investigated in the laboratory through a series of experiments to assess the context in which recruitment is elicited. Three types of food were used: 50% honey solution, large insect prey, and cluster of small insects. For all food types the first encounter by a scout resulted in increased numbers of ants leaving the nest and finding the food in the arena. After finding liquid food or large prey, the forager returns to the nest and transmits information to nestmates about food location on the substrate. The successful scout repeatedly taps the sting on the ground, and recruited ants collectively retrieve the large insect to the nest. On the other hand, there is no transmission of information to nestmates about the location of small clumped prey, although the returning scout induces nestmates to leave the nest and hunt. Because foraging in G. moelleri is restricted mostly to the nest bromeliad, and small worker size (0.5 cm) precludes capturing large prey solitarily, recruitment behavior widens the spectrum of food items consumed by this ant species. Although recruitment behavior in ponerines has already been reported to vary with the type and size of a food source, this study also shows that the transmission of information about food location depends on the type of food found (large prey or liquid food versus cluster of small prey).  相似文献   

2.
In social insects, the foraging activity usually increases with the length of food deprivation. In Lasius niger, a mass-recruiting ant species, the foraging adjustment to the level of food deprivation is regulated by the scout that fed at the food source and by the response of the nestmates to signals performed by the scout inside the nest. In this study, we look at the role of these direct interactions (antennations or trophallaxes) and indirect interactions (pheromonal emission) and how they are influenced by the level of food deprivation. At the beginning of recruitment, the relative number of nestmates leaving the nest to forage increases with the level of deprivation. The nestmates’ propensity to exit the nest is not influenced by a previous trophallactic and/or antennal contact with a scout. Our results strongly suggest that the exit of nestmates is triggered by a chemical signal emitted by a scout. Deprivation lowers the response threshold of nestmates to this chemical signal resulting in a more important exit from the nest. Surprisingly, 27% of starved nestmates that receive food from the scout relay the information by depositing a chemical signal before having discovered and drunk the food source. Both phenomena boost the recruitment process. Though successful foragers returning to the nest have a significant role in the recruitment to the food source, we observed that the response of the nestmates inside the nest also greatly influence regulation of the foraging activity.  相似文献   

3.
By comparing the behaviour of Lasius niger scouts at sucrose droplets of different volumes, we empirically identified the criterion used by each scout to assess the amount of food available as well as the rules governing its decision to lay a recruitment trail. When scouts discovered food volumes exceeding the capacity of their crop (3 or 6 μl), 90% immediately returned to the nest laying a recruitment trail. In contrast, when smaller food droplets (0.3, 0.7 or 1 μl) were offered, several scouts stayed on the foraging area, presumably exploring it for additional food. If unsuccessful, they returned to the nest without laying a trail. The droplet volume determined the percentage of trail-laying ants but had no influence on the intensity of marking when this was initiated. The key criterion that regulated the recruiting behaviour of scouts was their ability to ingest their own desired volume. This volume acted as a threshold triggering the trail-laying response of foragers. Collective regulation of foraging according to food size resulted from the interplay between the distribution of these desired volume thresholds among colony members and the food volume available. We relate some aspects of the foraging ecology of aphid-tending ants to this decision-making process. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

4.
Foragers of the ant Formica schaufussi recruit nestmates to large anthropod prey and cooperatively transport the prey to the nest. The size of the group of ants retrieving prey is significantly correlated with the prey mass at the point at which the retrieval group reaches the nest entrance. To understand the mechanism involved in this size matching process, the regulation of retrieval group size was investigated by examining the modulatory role of trail pheromones in recruitment communication and the behavioral processes that might adjust retrieval group size to prey mass. Laboratory studies of hindgut, poison, and Dufour's gland extracts showed that the contents of the hindgut, which was determined to be the source of trail pheromone, induced recruitment and orientation behavior in ants and regulated the recruitment response of ants in the absence of any other communication signal. However, chemical mass communication alone did not appear to explain the regulation of retrieval group size. Scout ants assess whether to collect prey individually or recruit nestmates to group-retrieve 100-, 200-, or 400-mg prey but did not vary group size in relation to either the prey mass or the presence of interspecific competitors once the decision to initiate group retrieval was made. The number of recruits leaving the nest was independent of these factors and first matched prey mass during prey transport, possibly through a process of differential individual response to immobile versus mobile prey items. Unpredictable factors such as prey resistance to movement and rapidly changing degrees of interspecific competition may preclude scouts from fine-tuning the retrieval group size before it reaches the prey.  相似文献   

5.
We studied the foraging and predatory behaviors of the invasive African myrmicine ant, Pheidole megacephala (F.) in its native range. Workers can singly capture a wide range of insects, including relatively large prey items. For still larger prey, they recruit at short range those nestmates situated within reach of an alarm pheromone and together spread-eagle the insect. These behaviors are complimented by a long-range recruitment (of nestmates remaining in the nest) based on prey size. P. megacephala scouts also use long-range recruitment when they detect the landmarks of termites and competing ant species, thus permitting them to avoid confronting these termites and ants solitarily.  相似文献   

6.
Animals can acquire a global knowledge about their environment that exceeds their individual capacities by estimating the local density and activity of nestmates in an area. In ants, home range marking can indicate the density and activity of nestmates, allowing scouts to assess the potential interest of the area as a foraging site. We investigated how home range marking through footprints influences the foraging behaviour of Lasius niger scouts at a sugary food source (1 M, 1.5 ml). Over a marked apparatus the discovery time of food sources decreased while the probability of scouts recruiting nestmates and of continuing to lay a trail increased. For ants making U turns on their return to the nest, home range marking helped them to resume laying a trail after the U turn and delayed the occurrence of the U turn. As a result, the trail intensity and the rate at which information about food was conveyed by scouts to nestmates depended on home range marking. Such modulation of information reduces the number of foragers mobilized to less frequented areas that are potentially dangerous and promotes recruitment and exploitation of food sources to better known sites.  相似文献   

7.
We study the influence of food distance on the individual foraging behaviour of Lasius niger scouts and we investigate which cue they use to assess their distance from the nest and accordingly tune their recruiting behaviour. Globally, the number of U-turns made by scouts increases with distance resulting in longer travel times and duration of the foraging cycle. However, over familiar areas, home-range marking reduces the frequency and thereby the impact of U-turns on foraging times leading to a quicker exploitation of food sources than over unmarked set-ups. Regarding information transfer, the intensity of the recruitment trail reaching the nest decreases with increasing food distance for all set-ups and is even more reduced in the absence of home-range marking. Hence, the probability of a scout continuing to lay a trail changes along the homeward journey but in a different way according to home-range marking. Over unexplored setups, at a given distance from the food source, the percentage of returning trail-laying ants remains unchanged for all tested nest-feeder distances. Hence, the tuning of the trail recruiting signal by scouts was not influenced by an odometric estimate of the distance already travelled by the ants during their outward journey to the food. By contrast, over previously explored set-ups, a distance-related factor – that is the intensity of home-range marking – strongly influences their recruiting behaviour. In fact, over a home-range marked bridge, the probability of returning ants maintaining their trail-laying behaviour increases with decreasing food distance while the gradient of home-range marks even induces ants which have stopped laying a trail to resume this behaviour in the nest vicinity. We suggest that home-range marking laid passively by walking ants is a relevant cue for scouts to indirectly assess distance from the nest but also local activity level or foraging risks in order to adaptively tune trail recruitment and colony foraging dynamics. Received 13 July 2004; revised 26 January and 20 May 2005; accepted 2 July 2005.  相似文献   

8.
Summary Workers of the giant tropical ant,Paraponera clavata, use trail pheromones for orientation and recruitment of nestmates. However, chemical markings may not always be sufficient for successful navigation in complex three-dimensional terrain, and additional orientation cues may be required. Behavioral field experiments were performed to investigate the significance of visual landmarks for homing foragers. Animals which were prevented from seeing the canopy were unable to navigate back to the nest, even though trail pheromones were still present. In contrast, foragers found their way back to the nest after their trail pheromones had been abolished but their visual scenes remained unchanged. This emphasizes the important role of visual landmarks during spatial orientation in homingP. clavata foragers. Individually foraging scouts were discovered in the understory of the forest floor up to 30 m away from their nest. They were rewarded, and displaced between 0.8 m and 13.6 m. Fifteen out of 16 animals had no difficulties in finding the nest entrance despite the altered appearance of local and distant landmarks at the release site. Apparently the scouts were able to recognize the visual scenes at the release site, and used them for reference to locate the nest entrance. In contrast, ants displaced from their nest to sites around 4 m away had more difficulties to re-find the nest.  相似文献   

9.
F. Ito 《Insectes Sociaux》1993,40(2):163-167
Summary Group recruitment during foraging was observed in a primitive ponerine ant,Amblyopone sp. (reclinata group) under laboratory condition. Workers searched for prey singly; however, if a item of prey was stung by a worker, other ants joined the attack. After the prey became immobile, one of the workers laid a trail directly toward the nest. This scout worker recruited additional workers (between 3 and 33). They formed a single file procession to the point of prey capture, and cooperatively transported the prey. A scout worker could stimulate nest workers to leave the nest without direct contact, and the recruited workers could trace the trail without guidance by the scout worker. This is the first report of recruitment behavior during foraging in the primitive antAmblyopone.  相似文献   

10.
The great flexibility of the feeding strategies exhibited by the ponerine ant Brachyponera senaarensis (Mayr) allows it to exploit either seeds or animal prey items as food resources. Predation is generally limited to small prey and is very similar to scavenging behavior. In laboratory conditions, the predatory behavior of B. senaarensis is not different in structure from that known in other carnivorous ants species. The workers forage individually and return to the nest using a series of cues involving light, a chemical graduated marking system near the nest entrance, and memory. During nest-moving, recruitment by tandem running was observed. However, in colonies where the food supply is regular, workers that discover food do not recruit nestmates, but make repeated trips between the nest and the food source. On the contrary, in starved colonies, the introduction of prey may produce a massive exit of foragers, corresponding to a primitive form of mass recruitment similar to that observed in some other ant species.  相似文献   

11.
Summary: We report in this study that the tree-dwelling African ant Polyrhachis laboriosa (Formicinae) uses different foraging strategies according to the size of the available food sources. We demonstrate that a recruitment behaviour can be induced with a 125 7l alimentary reward and that foraging remains solitary when rewards are smaller. Small rewards do not elicit trail-laying behaviour, and exploration behaviour is considerable. With large permanent food sources, scouts use group recruitment and there is less exploration around the reward. The choice of the foraging strategy is determined by the first forager, which modifies its behaviour according to the volume of the food supply. Independently of the size of the reward, the forager shows many exploratory displays during the first visit to the source, and contrary to most ants, it never lays a trail during its first return to the nest. Visual cues remain mainly used for individual orientation; information collected during the first trips are then transmitted to nestmates thanks to temporary trail laying behaviour.  相似文献   

12.
Cataglyphis ants are mostly scavengers adapted to forage individually in arid environments. Although they are widely thought to have lost the capacity of recruitment, we provide evidence that C. floricola foragers that find a large prey near their nest are able to solicit the help of nestmates to carry it cooperatively. After discovering a non-transportable prey, these ants readily return to their nest and stimulate the exit of several recruits. This rudimentary form of recruitment, which is absent in the sympatric species C. rosenhaueri, is only employed when the prey is sufficiently close to the nest entrance (<1 m) and does not allow the food location to be communicated. Instead, C. floricola recruits search for the prey in all directions until they discover it and transport it cooperatively to their nest.  相似文献   

13.
Ant colonies that undergo long starvation periods have to tune their exploratory and foraging responses to face their food needs. Although the number of foragers is known to increase with food deprivation in the ant Lasius niger, such enhanced food exploitation is not related to a more intense recruitment by successful scouts. We thus suggest that the colony’s response to a food shortage could result from changes at the level of the ant recruits, in particular from changes in their spatial organization inside the nest. Since aggregation plays a key role in the social organization of ants, we assume that the colony’s response to starvation could be due to changes in the aggregative behaviour of L. niger nestmates.We thus compared the aggregation dynamics of inner-nest workers and foragers having undergone either a short or a long-lasting starvation period. Whatever the ethological group (foragers or inner-nest workers), there was no significant influence of starvation on the aggregation dynamics nor on any feature of the observed clusters. This result shows that an increased foraging response to food shortage cannot be explained by changes in the tendency of nestmates to aggregate within the nest. Finally, we discuss other behavioural mechanisms, in particular changes in behavioural thresholds that could underlie the adaptive changes seen in colony foraging after long starvation periods. Received 25 June 2007; revised 21 January 2008; accepted 24 January 2008.  相似文献   

14.
This study considers the interplay between individual load-size selection and recruitment behavior in the leaf-cutting ant Atta cephalotes. Foraging workers anchor themselves on the leaf edge by their hind legs and pivot around them while cutting arcs from leaves. Since workers not only cut leaves but also lay chemical trails to recruit nestmates, we investigated whether there is conflict of motivation affecting the workers' decision either to quickly inform nestmates about a newly discovered food source, or instead to cut full-load leaf fragments, which could delay recruitment. Workers were presented with leaves of privet of three different grades of toughness (measured as leaf density=mass/area) as sources of different quality, and load-size selection and recruitment behavior by harvesting-satiated and harvesting-deprived workers were measured. The following results were obtained. (1) Leaf density affected individual load-size selection: both harvesting-satiated and harvesting-deprived workers were found to cut smaller leaf fragments from the denser leaves. (2) Harvesting-deprived workers cut smaller fragments than harvesting-satiated workers, and therefore saved cutting time. The fragments cut were smaller only during the initial phases of the recruitment process, when information about the discovery needed to be transferred. (3) Harvesting-deprived workers showed higher recruitment rates than harvesting-satiated workers. A considerable number of ants were observed to return to the nest unladen. During the initial phases, the ratio of laden/unladen workers was lower than that for harvesting-satiated workers, and increased with the development of the tograging process. (4) Scout workers confronted with familiar leaves ran back to the nest laying chemical trails without even contacting the leaves. They relied on olfactory cues to start recruiting nestmates, and leaf density played no role in their decisions. (5) When confronted with unfamiliar leaves, on the other hand, they assessed leaf quality by probing bites at the leaf edge, although no actual cuts occurred. In this situation, the resulting recruitment rates depended on physical leaf traits, being higher for the tenderer leaves. (6) Workers foraging on unfamiliar leaves cut smaller fragments than workers cutting familiar leaves, and most of them displayed trail-laying behavior when returning to the nest. The results support the hypothesis of a trade-off between time spent collecting and that invested to recruit nestmates. During the initial phases of exploitation of a newly discovered food source, workers reduced their individual carrying performance in order to return earlier to the colony for further recruitment.  相似文献   

15.
We investigated how the type of food (sucrose or protein) and the presence of brood influence foraging decisions of Lasius niger L. scouts. In particular, we studied whether and how these parameters alter the drinking behaviour of scouts and the allocation of workers to food retrieving and recruiting tasks. We analysed drinking and recruiting behaviour of single scouts from nests with or without brood that encountered a proteinaceous or sucrose droplet. A substantial fraction of scouts encountering a proteinaceous droplet did not ingest it and did not then return to the nest whereas nearly all drank at sugar droplets; brood presence did not influence this decision. Once an ant started drinking, it needed to drink a critical volume before returning to the nest; this critical volume did not depend on the type of food and the presence of brood. Scouts laid a trail only if they returned to the colony. Food type and brood presence altered the proportion of individuals that laid a trail but not the individual trail-laying intensity. We discuss the consequences of this decision system through simple individual assessments and decision rules, with regard to the self-organized foraging patterns of this species and the efficient collective exploitation of natural resources.  相似文献   

16.
In independent assays, workers of the ant Camponotus mus were conditioned to visit an arena where they found a large drop of sucrose solution of different concentrations, from 5 to 70% weight on weight (w/w). Single ants were allowed to collect the sucrose solution ad libitum, and feeding time, feeding interruptions, crop load, and intake rates were recorded. Feeding time increased exponentially with sucrose concentration, and this relationship was quantitatively described by the increase in viscosity with concentration corresponding to pure sucrose solutions. Ants collecting dilute solutions (5 to 15% w/w) returned to the nest with partial crop loads. Crop filling increased with increasing sucrose concentration, and reached a maximum at 42.6% w/w. Workers collecting highly concentrated solutions (70% w/w) also returned to the nest with a partially-filled crop, as observed for dilute solutions. Nectar intake rate was observed to increase with increasing sucrose concentration in the range 5 to 30% sucrose. It reached a maximum at 30.8%, and declined with increasing sucrose concentration. Results suggest that both sucrose concentration and viscosity of the ingested solution modulate feeding mechanics as well as the worker's decision about the load size to be collected before leaving the source.  相似文献   

17.
In social insects, selection takes place primarily at the level of the colony. Therefore, unlike solitary insects, social species are expected to forage at rates that maximize colony fitness rather than individual fitness. Workers can increase the net benefit of foraging by responding to increased resource availability, by responding more strongly to higher‐quality resources, and by decreasing the uncertainty with which nestmates find resources. Unlike many ants and social bees, no social wasp is known to utilize a nest‐based recruitment signal to inform nestmates of food location. On the other hand, wasps do learn the odor of food brought to the nest and use this cue to locate the food source outside the nest. Here, we quantify the effects of three food‐associated variables on the allocation of foraging effort in the yellowjacket Vespula germanica. We used an experimental approach to assess whether resource quantity, quality, or associated olfactory information affect the probability that a forager will leave the nest on a foraging trip. We addressed these questions by inserting a known amount of sucrose solution directly into nests and recording foraging effort (departure rate) over the subsequent hour‐long observation period. No differences were found in foraging effort because of the presence/absence of olfactory cues, but there was strong evidence that foraging effort increased in response to resource influx and resource quality. Thus, while olfactory cues are learned in the nest, only resource quality and the cue of increased amount of food in the nest factor into a forager's decision of whether or not to depart on a foraging trip. However, as prior work has shown, once a wasp forager leaves the nest, it uses the learned olfactory cues to aid in finding resources.  相似文献   

18.
Spatial distribution of ant workers within the nest is a key element of the colony social organization contributing to the efficiency of task performance and division of labour. Spatial distribution must be efficiently organized when ants are highly starved and have to get food rapidly. By studying ants’ behaviour within the nest during the beginning of food recruitment, this study demonstrates how the spatial organization is affected by starvation and improves the efficiency and the speed of recruitment as well as the allocation of food. (1) In starved nests, nestmates left the deep part of the nest and crowded near the nest entrance. This modification of the spatial distribution is a local phenomenon concerning only the individuals situated in the first chamber near the nest entrance. These starved individuals have a higher probability of leaving the nest after a contact with recruiters than nestmates situated deeper in the nest. This strongly suggests that nestmates situated near the nest entrance have a low response threshold to the signals emitted by recruiters. Their higher responsiveness speeds up their exit to the foraging area and hence may increase the efficiency of highly starved colonies in exploiting new food opportunities. (2) In starved nests, the trajectory covered by recruiters between contacts with nestmates was nearly twice as small. For recruiters, this represented a gain of time in the allocation of food. As the recruitment process follows snowball dynamics, this gain of time by starved recruiters might also speed up the exploitation of food. This study evidences how the spatial distribution of individuals as a function of their motivational state might have a regulatory function in the recruitment process, which should be generic for many social species.  相似文献   

19.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

20.
A study was conducted to determine the abundance of potential foods and the feeding substrates and behaviors of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in 2005, 2006, and 2007 in central Washington state. Aphid colonies with honeydew, a presumed food source for flies, were not seen on randomly selected branches of sweet cherry trees, Prunus avium L., but leaves with cherry juice, fruit that were damaged, and leaves with bird feces were commonly seen, especially later in the season. Grazing, a behavior in which the mouthparts rapidly move up and down and touch plant surfaces without discrete substances visible to the human eye, was seen more frequently in flies on leaves than on fruit. Grazing occurred more frequently than feeding on extrafloral nectaries (EFNs) on leaf petioles, cherry juice on leaves, and bird feces on leaves. The percentages of females and males that grazed on leaves were not different in 2 of 3 yr, but the percentage of females that grazed was higher in a third year. Percentages of female and male flies that fed on EFNs, cherry juice, and bird feces did not differ. More flies grazed the tops than bottoms of leaves. Flies also grazed on leaves of apple, pear, and grape. The results support the hypotheses that R. indifferens feeds mostly on leaves rather than fruit and that leaf surfaces may be the main feeding substrates for R. indifferens throughout the season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号