首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Unilateral hand clenching increases neuronal activity in the frontal lobe of the contralateral hemisphere. Such hand clenching is also associated with increased experiencing of a given hemisphere’s “mode of processing.” Together, these findings suggest that unilateral hand clenching can be used to test hypotheses concerning the specializations of the cerebral hemispheres during memory encoding and retrieval. We investigated this possibility by testing effects of unilateral hand clenching on episodic memory. The hemispheric Encoding/Retrieval Asymmetry (HERA) model proposes left prefrontal regions are associated with encoding, and right prefrontal regions with retrieval, of episodic memories. It was hypothesized that right hand clenching (left hemisphere activation) pre-encoding, and left hand clenching (right hemisphere activation) pre-recall, would result in superior memory. Results supported the HERA model. Also supported was that simple unilateral hand clenching can be used as a means by which the functional specializations of the cerebral hemispheres can be investigated in intact humans.  相似文献   

2.
Motor learning in man: A review of functional and clinical studies   总被引:1,自引:0,他引:1  
This chapter reviews results of clinical and functional imaging studies which investigated the time-course of cortical and subcortical activation during the acquisition of motor a skill. During the early phases of learning by trial and error, activation in prefrontal areas, especially in the dorsolateral prefrontal cortex, is has been reported. The role of these areas is presumably related to explicit working memory and the establishment of a novel association between visual cues and motor commands. Furthermore, motor associated areas of the right hemisphere and distributed cerebellar areas reveal strong activation during the early motor learning. Activation in superior-posterior parietal cortex presumably arises from visuospatial processes, while sensory feedback is coded in the anterior-inferior parietal cortex and the neocerebellar structures. With practice, motor associated areas of the left-hemisphere reveal increased activity. This shift to the left hemisphere has been observed regardless of the hand used during training, indicating a left-hemispheric dominance in the storage of visuomotor skills. Concerning frontal areas, learned actions of sequential character are represented in the caudal part of the supplementary motor area (SMA proper), whereas the lateral premotor cortex appears to be responsible for the coding of the association between visuo-spatial information and motor commands. Functional imaging studies which investigated the activation patterns of motor learning under implicit conditions identified for the first, a motor circuit which includes lateral premotor cortex and SMA proper of the left hemisphere and primary motor cortex, for the second, a cognitive loop which consists of basal ganglia structures of the right hemisphere. Finally, activity patterns of intermanual transfer are discussed. After right-handed training, activity in motor associated areas maintains during performance of the mirror version, but is increased during the performance of the original-oriented version with the left hand. In contrary, increased activity during the mirror reversed action, but not during the original-oriented performance of the untrained right hand is observed after left-handed training. These results indicate the transfer of acquired right-handed information which reflects the mirror symmetry of the body, whereas spatial information is mainly transferred after left-handed training. Taken together, a combined approach of clinical lesion studies and functional imaging is a promising tool for identifying the cerebral regions involved in the process of motor learning and provides insight into the mechanisms underlying the generalisation of actions.  相似文献   

3.
The present study explored EEG correlates of dream recall in 17 symptomatic, unmedicated depressed patients and in 19 healthy adults. EEG segments from the last 30 minutes of sleep, from the five minutes following morning awakening, and the absolute difference between sleep and waking EEG were contrasted between the two groups of participants during successful dream recall and during no recall. Period amplitude analysis was used to quantify EEG frequencies. Increased high-frequency beta incidence in the right hemisphere and amplitude in both hemispheres during sleep were associated with dream recall in both patient and control groups. Depressed patients also showed higher delta amplitude in both hemispheres during sleep associated with recall, but this effect did not reach significance. With regard to the changes between sleep and wakefiilness, a smaller change in right hemisphere beta and delta incidence characterized successful recall in healthy controls. By contrast, those with depression showed recall success when the sleep/wake shifts in right hemisphere beta and delta incidence were larger. Recall failure was characterized by small EEG shifts from sleep to wakefulness in the depressed group. The same effects were observed for beta and delta amplitude measures, except that healthy controls showed a large shift in delta amplitude in the sleep-wake transition during successful recall but not during recall failure. Recall in those with depression was associated with a dramatic shift in left hemisphere delta amplitude. These findings provide support for Koukkou and Lehmann's (1983, 1993) state-shift hypothesis of dream recall in healthy controls (except for left hemisphere delta amplitude) but not in the depressed. It appears that in order to recall a dream, depressed patients must undergo larger shifts in brain activity and perhaps a different pattern of reorganization of EEG frequencies than controls. This finding may account for the low rates of recall reported previously in this clinical group.  相似文献   

4.
Endogenous ultradian rhythms with a periodicity of 2-3 hours operate separately in the right and left hemispheres of the human brain and modulate physiological functions, perception and cognition. Since sensory pathways from either hand terminate in the contralateral hemisphere, ultradian rhythms of the right and left brain can be monitored by variations in the tactile discrimination of the left and right hand, respectively. Thirteen right-handed German males were tested every 15 minutes for 8 hours. Time series of the tactile error rate determined for the right and left hands oscillate with significantly different ultradian periodicities. Whereas cycles in tactile discrimination of the right hand (left hemisphere) have a periodicity of about 2 hours, tactile discrimination of the left hand (right hemisphere) is modulated by longer periods of about 3 hours. This is interpreted in terms of the overall functional asymmetry of the human brain. Since the left brain is the specialized locus for verbal processing and the right brain for visual-spatial processing, lateralized ultradian rhythms operating in the hemispheres may provide a distinct frame for long-term timing of neuronal processes underlying semantic and spatial mapping of the environment. This is particularly important for interpreting biosocial behavioural rhythms seen in humans living under natural conditions.  相似文献   

5.
We examined hand preference in the use of tools by tufted capuchins (Cebus apella). We presented a colony of monkeys with an enclosed container designed to accommodate the use of probing tools. Over an 8-month period, 13 monkeys used probes to extract sweet syrup from the narrow opening of the apparatus. Five monkeys exhibited bias toward use of their right hand and eight monkeys exhibited bias toward use of their left hand. Adult monkeys exhibited a greater percentage of right-hand preferent probing sequences than did juveniles. These results are consistent with hypotheses that in tasks that involve the use of tools, nonhuman primates exhibit strong lateral asymmetries at the individual level, a moderate left-hand bias at the population level, and increased bias with age toward use of the right hand.  相似文献   

6.
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans.  相似文献   

7.
Population hand preferences are rare in nonhuman primates, but individual hand preferences are consistent over a lifetime and considered to reflect an individual's preference to use a particular hemisphere when engaged in a specific task. Previous findings in marmosets have indicated that left‐handed individuals tend to be more fearful than their right‐handed counterparts. Based on these findings, we tested the hypotheses that left‐handed marmosets are (a) more reactive to a social stressor and (b) are slower than right‐handed marmosets in acquiring a reversal learning task. We examined the hand preference of 27 male and female marmosets (ages of 4–7 years old) previously tested in a social separation task and a reversal learning task. Hand preference was determined via a simple reaching task. In the social separation task, monkeys were separated from their partner and the colony for a single 7‐hr session. Urinary cortisol levels and behavior were assessed at baseline, during the separation and 24 hr postseparation. Hand preferences were equally distributed between left (n = 10), right‐handed (n = 10), and ambidextrous (n = 7) individuals. The separation phase was associated with an increase in cortisol levels and behavioral changes that were similar across handedness groups. However, cortisol levels at baseline were positively correlated with right‐handedness, and this relationship was stronger in females than in males. In addition, the occurrence of social behaviors (pre‐ and postseparation) was positively correlated with right‐handedness in both sexes. Baseline cortisol levels did not correlate significantly with social behavior. Acquisition of the reversals was poorer in females than males but did not differ as a function of handedness. We conclude that (a) both stress reactivity and cognitive flexibility are similar across handedness groups and (b) left‐handers exhibit less social behavior and have lower basal cortisol levels than ambidextrous and right‐handed subjects. The underlying causes for these differences remain to be established.  相似文献   

8.
Progesterone is a neuroactive hormone with non‐genomic effects on GABAA receptors (GABAAR). Changes in the expression of GABAAR subunits are related to depressive‐like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABAAR α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg–1) or vehicle, during two complete female estrous cycles (8–10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive‐like behaviors and GABAAR α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABAAR γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABAA system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABAAR α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A troop of Japanese macaques, which consisted of about 45 monkeys and was raised at the Primate Research Institute, Kyoto University, was observed during the period from April to June 1988, to evaluate the preferred choice of hand when reaching for food pellets. Nineteen monkeys showed a consistent left-hand preference, 5 monkeys showed a consistent right-hand preference, and the remaining 20 monkeys did not reveal a preference for either hand. Monkeys of more than 8 years of age tended to exhibit a greater left-hand preference with a lower incidence of absence of preference. A tendency to use either left or right hand increased with increasing age: the correlation ratio between age in years and the index to use either hand, designated as the laterality index, was significant (t-test,p<0.001,N=42). Children of mothers with a left-hand preference tended to show a left-hand preference.  相似文献   

10.
The correlations between the volumes of the caudate nucleus, putamen, amygdala, and hippocampus, on the one hand, and the P300 amplitude and latency of auditory evoked potentials, on the other hand, were studied in 14 schizophrenics. Significant positive correlations were found between the parameters of the late cognitive potential P300 (predominantly in the left hemisphere) and the caudate nucleus and putamen volumes, as well as between the right amygdala volume and the P300 amplitude in the left temporal region. The results testify again to the role of changes in the left hemisphere in the pathogenesis of schizophrenia and pose the question of the structural and functional features of left frontosubcortical communications.Translated from Fiziologiya Cheloveka, Vol. 31, No. 2, 2005, pp. 18–23.Original Russian Text Copyright © 2005 by Voronkova, Lebedeva, Gubsky, Orlova, Voscresenskaya, Kupriyanov, Anisimov, Solokhina.  相似文献   

11.
The study was made on healthy adult subjects. The reaction time of the hand (RT) was measured under two conditions: 1) the choice of reaction (right or left hand) is determined by the nature of the warning stimulus; 2) decision on the choice is taken, depending on the second, trigger stimulus. Stimuli are presented at random sequences to different visual fields. The reaction time to the visual signal presented to the visual field ipsilateral to the hand is significantly shorter (by 15 to 26 msec) than to the stimulus in the contralateral visual field. In a simple motor reaction, when no discrimination of trigger stimulus and the decision on the choice of reaction is required, a hemispheric asymmetry of reaction time is manifested: the left hemisphere only responds differently to direct visual stimulation and to that mediated through the contralateral hemisphere.  相似文献   

12.
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror’s regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.  相似文献   

13.

Background

Previous studies with Transcranial Magnetic Stimulation (TMS) have focused on the cortical representation of limited group of muscles. No attempts have been carried out so far to get simultaneous recordings from hand, forearm and arm with TMS in order to disentangle a ‘functional’ map providing information on the rules orchestrating muscle coupling and overlap. The aim of the present study is to disentangle functional associations between 12 upper limb muscles using two measures: cortical overlapping and cortical covariation of each pair of muscles. Interhemispheric differences and the influence of posture were evaluated as well.

Methodology/Principal Findings

TMS mapping studies of 12 muscles belonging to hand, forearm and arm were performed. Findings demonstrate significant differences between the 66 pairs of muscles in terms of cortical overlapping: extremely high for hand-forearm muscles and very low for arm vs hand/forearm muscles. When right and left hemispheres were compared, overlapping between all possible pairs of muscles in the left hemisphere (62.5%) was significantly higher than in the right one (53.5% ).The arm/hand posture influenced both measures of cortical association, the effect of Position being significant [p = .021] on overlapping, resulting in 59.5% with prone vs 53.2% with supine hand, but only for pairs of muscles belonging to hand and forearm, while no changes occurred in the overlapping of proximal muscles with those of more distal districts.

Conclusions/Significance

Larger overlapping in the left hemisphere could be related to its lifetime higher training of all twelve muscles studied with respect to the right hemisphere, resulting in larger intra-cortical connectivity within primary motor cortex. Altogether, findings with prone hand might be ascribed to mechanisms facilitating coupling of muscles for object grasping and lifting -with more proximal involvement for joint stabilization- compared to supine hand facilitating actions like catching. TMS multiple-muscle mapping studies permit a better understanding of motor control and ‘plastic’ reorganization of motor system.  相似文献   

14.
This study describes video-task acquisition in two nonhuman primate species. The subjects were seven rhesus monkeys (Macaca mulatta) and seven chimpanzees (Pan troglodytes). All subjects were trained to manipulate a joystick which controlled a cursor displayed on a computer monitor. Two criterion levels were used: one based on conceptual knowledge of the task and one based on motor performance. Chimpanzees and rhesus monkeys attained criterion in a comparable number of trials using a conceptually based criterion. However, using a criterion based on motor performance, chimpanzees reached criterion significantly faster than rhesus monkeys. Analysis of error patterns and latency indicated that the rhesus monkeys had a larger asymmetry in response bias and were significantly slower in responding than the chimpanzees. The results are discussed in terms of the relation between object manipulation skills and video-task acquisition.  相似文献   

15.
A conditioned response model of the placebo effect   总被引:1,自引:0,他引:1  
A model of the placebo response as a conditioned response(CR) is presented and predictions from this model are listed. Through association with active ingredients(UCS), neutral(CS) places, persons, procedures, and things can come to acquire the ability to reduce pain, anxiety, and depressive responses. One major counterintuitive prediction from the model is that therapists who routinely use active ingredients(UCS) or powerful drugs will get stronger placebo effects than those who routinely use inert ingredients(CS) or weak drugs. Developmentally, placebo responding appears to involve two successive conditioning stages, which may involve first the left and later the right hemisphere in right-handed subjects. The relationship between placebo responding and hypnotizability is discussed.This paper was first presented at the San Diego Biomedical Symposium (invited paper), San Diego, California, November 1977. Later it was presented at a symposium on Non-Specific Effects in Biofeedback, Biofeedback Society of America, Albuquerque, New Mexico, February 1978. It has been published in abbreviated form inProceedings of the San Diego Biomedical Symposium, New York: Academic Press, 1977. I would like to thank G. E. Schwartz for encouraging me to repackage this model for left brain (critical analytic) consumers, and particularly for his encouragement and critical comments during the review process.  相似文献   

16.
We tested the effects of a haptic search task on hand preferences in capuchins(Cebus apella) and compare this situation to a visual by guided reaching task. In the haptic task, 21 monkeys searched for sunflower seeds on the top or side surfaces of 12 objects. A left-hand preference emerged at the group level, suggesting a greater involvement of the right hemisphere. The percentage of preferred hand usage and the direction of the preference were influenced by both sex and age of the subjects: adult males tended to be less lateralized than the other groups of subjects were. Shape had an insignificant effect on the direction of hand preferences or on the percentage of preferred hand use. No lateral bias emerge in the visually guided reaching task, and the percentage of left-hand usage fell significantly across tasks, demonstrating that the haptic demands of the task enhance the use of the left hand at the group level. We discuss these results with regard to current theories on manual lateralization in nonhuman primates.  相似文献   

17.
The general objective of this study was to compare the precise grasping behavior and intermanual differences in performance between three Pan paniscus and five Homo sapiens in grasping small objects. We compared the temporal pattern of two submovements of consecutive grasping cycles, the (visuomotor) reaching and the (sensorimotor) grasping. Both species were similarly successful in this task, they showed a behavioral right-hand preference and preferred specific types of grips. Bonobos required less time for reaching an object but a much longer time to grasp it than humans did. Thus, the species pursued different strategies. We assumed that this might be due to the different grip techniques. However, grip preferences did not serve a quicker intramanual performance but they pronounced differences between hands. Intermanual differences in timing were restricted to the reaching part and more strongly in bonobos than in humans. However, the right hand need not necessarily perform quicker. As in the case of humans, we assume that attentional cues were focused more on preparing a proper grip with the right hand than on a quick performance. However, strong intermanual differences in bonobos may indicate an overall stronger neuronal asymmetry in the motor organization of the finger musculature that prepare a proper grip than is true of humans.  相似文献   

18.
The aim of this study was to analyze the manual patterns used by tufted capuchin monkeys (Cebus apella) to retrieve a small food item from a narrow tube, with special attention focused on the independent use of single fingers, fine digit movements, hand preference, and intermanual differences in the time it took the monkeys to obtain the food. The capuchins (n = 20) mainly used their forefinger to extract the food from the tube. The simultaneous use of the index and middle fingers occurred less frequently, and the use of the forefinger in combination with other digits occurred rarely. The capuchins demonstrated a capacity to move single digits independently when the fingers were locating the food inside the tube, and displayed a high mobility of the distal phalanx joints. However, they possessed only a limited capacity to coordinate single fingers in space, and displayed only a slight degree of manual preshaping when they approached the tube. A hand-preference analysis failed to reveal any significant lateral bias for the group, since both adults (> or = 5 years) and immature individuals (<5 years) of both sexes used either hand with the same frequency. Conversely, a latency analysis showed a significant interaction between the subject's age and performance difference between hands: in adults, but not in immature individuals, the left hand was faster than the right hand in retrieving food.  相似文献   

19.
Simultaneous recording of unit activity of 6-8 putamen neurons in two monkeys (M. nemestrina and M. mulatta) during performance of the task of alternative spatial choice, was carried out. The extent of rearrangements of the activity in the groups of neurons with the transition from every step of the behavioral program to the next one and the degree of difference in mosaics of reactivity, forming at every step with a different variants of performance, were evaluated using discriminative analysis. The rearrangements of the impulse activity were recorded in all steps of the program. The dynamics of rearrangements with the choice of right or left feeder was different, which resulted in appearance of significant differences in mosaics of reactivity at the stage of decision making and receiving reward. The rearrangements preceding the task-oriented movement of one hand were more pronounced in the contralateral hemisphere. The volume of rearrangements may increase with the performance of movement but the differences of mosaics formed during the movement of right and left hand are decreasing. At the stage of reception of the reward, the rearrangements were greater in case the animal chose the certain (left) feeder irrespective of the side of recording the unit activity.  相似文献   

20.
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号