首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspects of membrane stucture and functions were studied in ethidium bromide resistant cells. Submitochondrial particles were solubilized and electrophoresed. The gel patterns, representing mitochondiral membrane proteins, demonstrated qualitative and quantitative alterations in mitochondrial preparations derived from virus-transformed cells and ethidium bromide resistant cells as compared to the control cells. The plasma membrane glycoproteins were labelled by the sodium borohydride method. The glycoporteins were released with Triton X-100 and electrophoresed. Fluorograms of the gels demonstratred some marked differences between the ethidium bromide resistant cells and their parental strain. The observed alterations in the membrane glycoproteins did not result in altered glucose transport properties or in the elution patterns of plasma membrane glycopeptides as analyzed by Sephadex G-50 chromatography. Dye uptake and binding studies with intact parental and drug resistant cells and their isolated mitochondria demonstrated no alteration of the membrane permeability or the number of binding sites for ethidium bromide. Similar results were also obtained with a cyanine dye. This latter finding was significant in that it permitted one to exclude dye exclusion as a mechanism for ethidium bromide resistance.  相似文献   

2.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

3.
The role of transport activity of Acholeplasma laidlawii plasmatic membrane in the development of resistance to ciprofloxacin was investigated. It was shown that ethidium bromide used as fluoroquinolone analogue in plasmatic membrane efflux pump was accumulated in ciprofloxacin-resistant cells in much less amount. It was estimated that ethidium bromide efflux depended on temperature, glucose and transmembrane electro-chemical proton potential. Inhibitors of efflux systems--reserpine and verapamil enhanced the ethidium bromide accumulation much more intensively in ciprofloxacin resistant cells. The results of investigation allowed to consider the existence of active efflux system for toxic agents in acholeplasma; in the case of ciprofloxacin-resistant strain these systems are inducible.  相似文献   

4.
Ethidium bromide (23 nmol/mg of protein) was found to be a potent inhibitor of oxidative phosphorylation, as determined by loss of respiratory control through the inhibition of the ADP-induced state-3 rate of oxygen uptake. A time latency for complete loss of respiratory control was noted, after which 2,4-dinitrophenol (DNP) was ineffective in overcoming this inhibition. In the absence of EDTA, ethidium bromide produced an apparent uncoupling, as evidenced by an increase of state-4 rates of oxygen uptake and loss of respiratory control. As low as 8 nmol of ethidium bromide/mg of protein stimulated mitochondrial adenosine triphosphatase (ATPase) for 5 min. Two to three times this amount of ethidium bromide reduced the amount Pi released. Preincubation of mitochondria with ethidium bromide prevented subsequent release of Pi during incubation with ATP. Likewise, preincubation inhibited the DNP-activated ATPase. The uptake of low levels of [14C]ADP preincubated with ethidium bromide (14 nmol/mg of protein) and succinate or α-ketoglutarate could apparently be reversed, with loss of radioactivity beginning several minutes after addition of the radioactive nucleotide. Inhibition of oxidative phosphorylation by ethidium bromide may be due to modification of the adenine nucleotide transport system in mitochondria. The production of apparently swollen mitochondria treated in vitro with ethidium bromide and substrates necessary for oxidative phosphorylation, as seen in electron micrographs, further indicates that the compound is capable of acting directly upon mouse liver mitochondrial function and structure.  相似文献   

5.
Mitochondrial DNA synthesis in HeLa cells is inhibited by 0.2 μg ethidium bromide/ml whereas nuclear DNA synthesis is essentially unimpaired under the same conditions. The action of ehtidium bromide on mitochondrial DNA appears to be completed within 18 hours of exposure to the drug. Total cellular macromolecular synthesis under ethidium bromide is initially decreased and at later times slightly stimulated. Ethidium bromide pretreatment of HeLa cells did not significantly affect the multiplication of Herpes simplex virus as compared with that in control cells.  相似文献   

6.
Addition of ethidium bromide to ameboid cultures of the slime mold,Dictyostelium discoideum, caused a cessation of cell division after 1 or 2 generations. The replication of mitochondrial DNA was immediately blocked as indicated by the 50% decrease in the DNA content of purified mitochondria from ethidium-bromide-treated cultures. The activity of the respiratory chain was also inhibited, resulting in a 75% decrease in cyanide-sensitive whole cell respiration. Spectral analysis at low temperature indicated that the amount of cytochromec 1 was decreased 80% and that of cytochromec increased 100% in mitochondria from treated cells. Two cytochromesb absorbing at 556 and 561 nm were observed in mitochondria from both control and ethidium-bromide-treated cultures. The content of cytochromeb 561 appeared to decline more than didb 556, but it is hard to quantitate the decrease. The effects of ethidium bromide were fully reversible. When the drug was removed, the cells resumed a normal growth rate without any discernible lag. The activity of oligomycin-sensitive ATPase, cytochrome oxidase, and succinate-cytochrome-c reductase as well as the cytochrome content began to increase after 1 day returning to control levels within 5 days. Electron micrographs of whole cells treated with ethidium bromide revealed that mitochondrial profiles were elongated and had greatly reduced cristae. Numerous membrane whorls were apparent, as was a profound loss of rough endoplasmic reticulum. Three days after removal of ethidium bromide, mitochondria were again ovoid in shape and contained well-developed cristae. In all of the cells during recovery, there was a single large vacuole that appeared to enclose a large portion of the cell volume, forming a new cellular compartment that may simplify the breakdown of previously damaged organelles.This work is in partial fulfillment of the requirements for the Doctor of Philosophy degree at the City University of New York.  相似文献   

7.
The interaction of ethidium bromide, a fluorescent dye, with Escherichia coli cells was studied. The envelope of intact cells was shown to be impermeable for ethidium bromide molecules. The dye penetrated however into E. coli spheroplasts. The barrier properties of the cell envelope against ethidium bromide were ruptured if the cells were treated with EDTA. The results suggest that the outer membrane serves as a principal barrier against penetration of ethidium bromide inside the cells while the cytoplasmic membrane of E. coli is permeable for the dye.  相似文献   

8.
The uptake of ethidium bromide by Escherichia coli K 12 cells has been studied by using 14C-labeled ethidium and spectrofluorometry on three E. coli strains: the first one (AB1157) has an ethidium-resistant phenotype; the second one derives from the first one after a single mutation (at 10 min on the E. coli genetic map) and has an ethidium-sensitive (Ebs) phenotype; the third one is the acrA strain which appeared to have the same phenotype as the Ebs strain. When the cells are in exponential growth, no ethidium enters wild-type cells, and a very limited amount of ethidium enters Ebs and acrA cells. Massive quantities of ethidium enter AB1157, Ebs, and acrA cells treated by uncouplers and respiring Ebs cells treated by the membrane ATPase-inhibitor dicyclohexylcarbodiimide. A small amount of ethidium enters cells treated in M9 succinate medium by metabolic inhibitors such as KCN or cells starved with oxygen in the same M9 medium. The amount of ethidium and ethidium dimer retained at equilibrium by either type of cell, and by cells infected by T5 phage, as well as the kinetics of influx and efflux, has been measured under a variety of situations (membrane energized or not, and/or membrane ATPase inhibited or not). Furthermore, it was shown that ethidium binds to both RNA and DNA when it enters CCCP-treated wild-type E. coli cells, whereas it binds mainly to DNA when it enters Ebs and acrA cells in exponential growth. As it will be discussed, it is difficult to account for the EthBr uptake by invoking only membrane functions and active transport. Therefore, it is proposed that the variations of the nucleic acid accessibility in E. coli cells might play a role in the control of this uptake. Accordingly, in ethidium-sensitive cells, the mutation would have caused a significant part of the chromosomal DNA (10-20%) to become accessible to ethidium. Hansen [Hansen M. T. (1982) Mutat. Res. 106, 209-216], after a study of the photobinding of psoralen to nucleic acids in the acrA mutant, also suggested that DNA environment was modified in acrA cells.  相似文献   

9.
Ethidium bromide intercalates between the bases of native DNA, resulting in several biological anomalies. The effects of ethidium bromide on the mitochondria of cultured mouse L cells were studied. At a concentration of 1 µg ethidium bromide/ml it was observed that concentrations of cytochromes a + a3 and b decreased, a + a3 more rapidly than b. In contrast, the concentration of cytochromes c1 and c increased or remained the same as in control cells. Concomitant with the decrease of cytochromes a + a3 and b was an enlargement of the mitochondria and a reduction in the cristae. The cristae that remained were abnormally organized. After prolonged treatment with ethidium bromide a second population of small, more normally organized mitochondria was apparent. These effects of ethidium bromide could be reversed.  相似文献   

10.
Ethidium bromide, a new type of inhibitor of energy transduction in oxidative phosphorylation, inhibited ATP synthesis in intact mitochondria but not in submitochondrial particles, the latter being inside-out relative to the membranes of intact mitochondria. Ethidium bromide incorporated inside the submitochondrial particles inhibited ATP synthesis in the particles. The decrease of the membrane potential by valinomycin (plus KCl) inhibited only slightly the energy-dependent binding of ethidium bromide to the mitochondria. The present results show clearly that ethidium bromide inhibited energy transduction in oxidative phosphorylation by acting on the outer side (C-side) of the inner mitochondrial membrane, perhaps by neutralizing negative charges created on the surface of the C-side, and that it had no inhibitory activity on the inner side (M-side) of the membrane. Th present results show also that the energy-dependent binding of ethidium is not due to electrophoretic transport down the membrane potential; ethidium may bind to negative charges on the surface of the C-side. The present study suggest that an anisotropic distribution of electric charge in the inner mitochondrial membrane is an intermediary high energy state of oxidatvie phosphorylation.  相似文献   

11.
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40°C) and permissive temperature (33°C). The transformed cells grown at 33°C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40°C. Both theK m andV max for ferricyanide reduction were changed in the transformed state. The change inV max can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.  相似文献   

12.
Chinese hamster ovary cells labelled with [14C]thymidine were made permeable, incubated with various concentrations of the intercalating dye ethidium bromide, and centrifuged through neutral sucrose gradients. The gradient profiles of these cells were qualitatively similar to those obtained by centrifuging DNA from untreated, lysed permeable cells through gradients containing ethidium bromide. The sedimentation distance of DNA had a biphasic dependence on the concentration of ethidium bromide, suggesting that the dye altered the amount of DNA supercoiling in situ. The effect of ethidium bromide intercalation on incorporation of [3H]dTMP into acid-precipitable material in an in vitro DNA synthesis mixture was measured. The incorporation of [3H]dTMP was unaffected by less than 1 microgram/ml of ethidium bromide, enhanced up to two-fold by 1--10 microgram/ml, and inhibited by concentrations greater than 10 micrograms/ml. Alkaline sucrose gradient analysis revealed a higher percentage of small DNA fragments (6--20 S) in the cells treated with 2 micrograms/ml ethidium bromide than in control cells. These fragments attained parental size within the same time as the fragments in control cells. In cells treated with 2 micrograms/ml ethidium bromide, a significant fraction of newly synthesized DNA resulted from new starts, whereas in untreated cells practically none of the newly synthesized DNA resulted from new starts. These results suggest that relaxation of DNA supercoiled structures ahead of the replication fork generates spurious initiations of DNA synthesis and that in intact cells the rate of chain elongation is limited by supercoiled regions ahead of the growing point.  相似文献   

13.
Bovine fetal fibroblast cells were treated with ethidium bromide at a low concentration for 15 passages in culture to determine its effect on mitochondrial DNA copy number and on cell metabolism. Mitochondrial membrane potential and lactate production were estimated in order to characterize cell metabolism. In addition, mitochondrial DNA ND5 in proportion to a nuclear gene (luteinizing hormone receptor) was determined at the 1st, 2nd, 3rd, 10th, and 15th passages using semi-quantitative PCR amplification. Treated cells showed a lower mitochondrial membrane potential and higher levels of lactate production compared with control cells. However, the mitochondrial DNA/nuclear DNA ratio was higher in treated cells compared with control cells at the 10th and 15th passages. This ratio changed between the 3rd and 10th passages. Despite a clear impairment in mitochondrial function, ethidium bromide treatment did not lead to mitochondrial DNA depletion. It is possible that in response to a lower synthesis of ATP, due to an impairment in oxidative phosphorylation, treated cells develop a mechanism to resist the ethidium bromide effect on mtDNA replication, resulting in an increase in mitochondrial DNA copy number.  相似文献   

14.
T Ide  R Baserga 《Biochemistry》1976,15(3):600-605
Clone H6-15/163 is a clone of cells, originally derived from SV-40 transformed 3T3 cells, which express the transformed phenotype at low (32 degrees C) but not at high (39 degrees C) temperature. Chromatin was isolated from these cells grown at either temperature and studied by circular dichroism and for its ability to bind the intercalating dye, ethidium bromide. During the exponential phase of growth the chromatins of cells grown at either 32 or 39 degrees C are undistinguishable. Cessation of growth in confluent cultures results in marked changes in circular dichroism spectra and in ethidium bromide binding capacity of chromatin. The changes are much are much more pronounced at 39 degrees C (where the cells truly become quiescent) than at 32 degrees C (where cell proliferation continues although the number of cells per culture remains stationary). Temperature shifts and medium replacement also cause changes in chromatin structure, but the changes are again related to the extent of cell proliferation. It is concluded that the chromatin changes occurring in H6-15/163 cells and detectable by circular dichroism and ethidium bromide binding can be related to the proliferating activity of the cultured cells rather than to the expression of the transformed or untransformed phenotype.  相似文献   

15.
The lprG-Rv1410c operon is critical for the survival of Mycobacterium tuberculosis during infection, but very little is known about the functions of its proteins. LprG is a lipoprotein, and Rv1410c encodes the major facilitator superfamily small molecule transporter P55. P55 likely exports small molecules outside of the bacterial cell, but the function of LprG is unclear. A deletion of the homologous operon in Mycobacterium smegmatis is more susceptible to ethidium bromide, and drug resistance is restored by the intact operon from M. tuberculosis. The multidrug resistance pump inhibitor reserpine inhibits resistance to ethidium bromide in both wild-type M. smegmatis and the complemented mutant, suggesting that P55-mediated transport is responsible for drug resistance and that ethidium bromide is a novel substrate for P55. In addition to hypersensitivity to ethidium bromide, cells that lack the lprG-Rv1410c operon display abnormal colony morphology and are defective for sliding motility, properties that suggest an alteration of cell wall composition. Strikingly, both ethidium bromide transport and normal cell surface properties require functional P55 and LprG, as neither alone is sufficient to restore function to the deletion mutant. Thus, P55 requires the cell surface lipoprotein for normal function.  相似文献   

16.
A reliable and rapid test to detect cytotoxic chemicals which affect cell membranes is described. Fluorescein diacetate freely penetrates intact cells where it is hydrolyzed to its fluorochrome, fluorescein, which is retained in the cell due to its polarity. On the other hand, ethidium bromide is known to be excluded from the intact cell, staining only nucleic acids of membrane-damaged cells. The combination of both fluorochromes results in counter-staining: intact cells fluoresce green (cytoplasm) and membrane-damaged cells fluoresce red (nucleus and RNA). Rat thymocytes freshly isolated without enzyme treatment were incubated simultaneously with test substance and dye solution fluorescein diacetate and ethidium bromide. A two-parameter analysis was performed on a flow cytometer with an on-line computer. Concentration-dependent effects of various detergents and solvents were quantified by measuring the amount of dye retention, i.e., the decrease or increase in fluorescein—fluorescence (peak shift), and the decrease in dye exclusion (increase in ethidium bromide-staining) relative to the untreated control. The assay can be used for rapid monitoring of chemical insults to cell membranes which precede the decrease of the viability measured by pure dye exclusion techniques.Abbreviations DMA dimethyl sulfate - DMSO dimethyl sulfoxide - EB ethidium bromide - F fluorescein - FDA fluorescein diacetate - FS25 concentration of test substance resulting in a F-peak left-shift of 25% from control - PBS phosphate buffered saline - SCT forward light scatter - SDS sodium dodecyl sulfate  相似文献   

17.
The isolation of plasmid DNA produced in transformed bacterial cells is essential for many molecular biology techniques. Two drawbacks to the widely used CsCl-ethidium bromide method of preparation are the need for ultracentrifuge time and the generation of ethidium bromide waste. In this article we describe a method for the quick isolation of plasmid DNA without the use of an ultracentrifuge or ethidium bromide.  相似文献   

18.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

19.
Ethidium bromide-resistant cell strains were obtained by continuous selection of an adult rat liver-derived cell line (ARL6T) grown in the continuous presence of 200 ngl ml ethidium bromide. Comparison of resistant strains and parental (sensitive) cells was made for uptake and binding of ethidium bromide, visualized as fluorescent ethidium bromide-nucleic acid complexes. Although uptake of ethidium bromide was similar in parental and resistant cells, efflux kinetics were markedly different. Over a three-hour period, parental (sensitive) cells maintained fluorescence following a short ethidium bromide pulse (100 g/ ml ethidium bromide). In contrast, ethidium bromide-resistant cell lines eliminated photographically detectable fluorescent complexes within three hours following pulse exposure to ethidium bromide. The rapid elimination of ethidium bromide fluorescent complexes in all (5) resistant cell strains examined supports an efflux mechanism as contributing to the resistance of ethidium bromide cytotoxicity in these cells.Abbreviations EtBr ethidium bromide - HBSS Hanks' balanced salt solution  相似文献   

20.
The initial rates of deoxy-D-glucose transport by cultures of growing and density-inhibited mouse embryo cells and lines of mouse cells transformed spontaneously or after infection by murine leukemia virus or murine sarcoma virus were investigated as a function of the deoxyglucose concentration. The apparent Km for deoxyglucose transport was about the same for all types of cells (1–2 mM). The Vmax of secondary cultures of mouse embryo cells decreased from 6 nmoles/106 cells/minute for sparse cultures to less than 1 nmole/106 cells/minute for density-inhibited cultures. The Vmax was about the same whether estimated in monolayer culture or in suspensions of cells dispersed by treatment with trypsin. The Vmax for deoxyglucose transport by the established cells, whether transformed spontaneously or by virus infection, was 4 to 25 times higher than that for density-inhibited mouse embryo cells and was independent of the cell density of the cultures. Deoxyglucose transport was competitively inhibited by Cytochalasin B, Persantin, glucose and 3-O-methyl-D-glucose and the apparent Ki values of inhibition were similar for the mouse embryo cells and the various cell lines. Similarly, the sensitivity of the glucose transport systems to inactivation by p-chloromercuribenzoate was about the same for all types of cells. The results suggest that the glucose transport system of the normal mouse embryo cells and the cells of the various established lines is qualitatively the same, but that the number of functional transport sites differs for the various cell lines and decreases markedly in mouse embryo cells with an increase in cell density of the cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号