首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence has suggested that subunits of the coatomer protein (COPI) complexes are functionally associated with endosomes in mammalian cells. We now provide genetic evidence that COPI plays a role in endocytosis in intact cells. The ldlF mutant CHO cell line bears a temperature-sensitive defect in the COPI subunit ε-COP. In addition to exhibiting conditional defects in the secretory pathway, we find that the cells are also defective at mediating endosome-associated functions. As found for cells microinjected with anti-COPI antibodies, ldlF cells at the restrictive temperature could not be infected by vesicular stomatitis (VSV) or Semliki Forest virus (SFV) that require delivery to acidic endosomes to penetrate into the cytosol. Although there was no temperature-sensitive defect in the internalization of receptor-bound transferrin (Tfn), Tfn recycling and accumulation of HRP were markedly inhibited at the restrictive temperature. Sorting of receptor-bound markers such as EGF to lysosomes was also reduced, although delivery of fluid-phase markers was only partially inhibited. In addition, lysosomes redistributed from their typical perinuclear location to the tips of the ldlF cells. Mutant phenotypes began to emerge within 2 h of temperature shift, the time required for the loss of detectable ε-COP, suggesting that the endocytic defects were not secondary to a block in the secretory pathway. Importantly, the mutant phenotypes were also corrected by transfection of wild-type ε-COP cDNA demonstrating that they directly or indirectly reflected the ε-COP defect. Taken together, the results suggest that ε-COP acts early in the endocytic pathway, most likely inhibiting the normal sorting and recycling functions of early endosomes.  相似文献   

2.
Mutant V.24.1, a temperature-sensitive derivative of Chinese hamster ovary cells, defines the End4 complementation group of mutants selected for resistance to protein toxins and has defective lysosomes at the restrictive temperature (P. A. Colbaugh, M. Stookey, and R. K. Draper, J. Cell Biol. 108:2211-2219, 1989). We have investigated the biosynthesis of Sindbis virus envelope glycoproteins in V.24.1 cells. When the cells were infected at the restrictive temperature, the envelope glycoproteins E1 and E2 were undetectable on the cell surface and proteolytic processing of the precursor protein pE2 to envelope protein E2 did not occur. Protein retained intracellularly was sensitive to endoglycosidase H and, by immunofluorescence localization, appeared to accumulate in the endoplasmic reticulum. We conclude that the genetic defect in V.24.1 cells impairs the transport of Sindbis virus glycoproteins, apparently at the level of export from the endoplasmic reticulum.  相似文献   

3.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

4.
We describe here the properties of a mutant of Chinese hamster ovary cells that expresses a conditional-lethal mutation affecting dense lysosomes. This mutant, termed V.24.1, is a member of the End4 complementation group of temperature-sensitive mutants selected for resistance to protein toxins (Colbaugh, P. A., C.-Y. Kao, S.-P. Shia, M. Stookey, and R. K. Draper. 1988. Somatic Cell Mol. Genet. 14:499-507). Vesicles present in postnuclear supernatants prepared from V.24.1 cells harvested at the restrictive temperature had a 50% reduction in acidification activity, assessed by the ATP-stimulated accumulation of the dye acridine orange in acidic vesicles. To investigate whether specific populations of vesicles were impaired in acidification, we measured acidification activity in three subcellular fractions prepared from Percoll gradients: one containing endosomal and Golgi markers, one containing buoyant lysosomes, and the third containing dense lysosomes. Activity in dense lysosomes was reduced by 90%, activity in the buoyant lysosome fraction was unaffected, and activity in the endosome-Golgi fraction was mildly reduced. The activity of three lysosomal enzymes--beta-hexosaminidase, beta-galactosidase, and beta-glucocerebrosidase--was also reduced in dense lysosomes but nearly normal in the buoyant lysosome fraction. However, beta-hexosaminidase and beta-glucocerebrosidase activity was increased two- to threefold in the endosome-Golgi fraction. We conclude that the lesion selectively impairs dense lysosomes but has little effect on properties of buoyant lysosomes.  相似文献   

5.
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.  相似文献   

6.
We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning.  相似文献   

7.
Mutant V.24.1, a member of the End4 complementation group of temperature-sensitive CHO cells, is defective in secretion at the restrictive temperature (Wang, R.-H., P. A. Colbaugh, C.-Y. Kao, E. A. Rutledge, and R. K. Draper. 1990. J. Biol. Chem. 265:20179-20187; Presley, J. F., R. K. Draper, and D. T. Brown. 1991. J. Virol. 65:1332-1339). We have further investigated the secretory lesion and report three main findings. First, the block in secretion is not due to aberrant folding or oligomerization of secretory proteins in the endoplasmic reticulum because the hemagglutinin of influenza virus folded and oligomerized at the same rate in mutant and parental cells at the restrictive temperature. Second, secretory proteins accumulated in a compartment intermediate between the ER and the Golgi. Several lines of evidence support this conclusion, the most direct being the colocalization by immunofluorescence microscopy of influenza virus hemagglutinin with a 58-kD protein that is known to reside in an intermediate compartment. Third, at the resolution of fluorescence microscopy, the Golgi complex in the mutant cells vanished at the restrictive temperature.  相似文献   

8.
Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.  相似文献   

9.
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.  相似文献   

10.
Fluid-phase endocytosis was studied in isolated rabbit liver parenchymal cells by using 125I-poly(vinylpyrrolidone) (PVP) as a marker. First, uptake of 125I-PVP by cells was determined. Also, cells were loaded with 125I-PVP for 20, 60 and 120 min, and release of marker was monitored for 120-220 min. Then we used the Simulation, Analysis and Modeling (SAAM) computer program and the technique of model-based compartmental analysis to develop a mechanistic model for fluid-phase endocytosis in these cells. To fit all data simultaneously, a model with three cellular compartments and one extracellular compartment was required. The three kinetically distinct cellular compartments are interpreted to represent (1) early endosomes, (2) a prelysosomal compartment equivalent to the compartment for uncoupling of receptor and ligand (CURL) and/or multivesicular bodies (MVB), and (3) lysosomes. The model predicts that approx. 80% of the internalized 125I-PVP was recycled to the medium from the early-endosome compartment. The apparent first-order rate constant for this recycling was 0.094 min-1, thus indicating that an average 125I-PVP molecule is recycled in 11 min. The model also predicts that recycling to the medium occurs from all three intracellular compartments. From the prelysosomal compartment, 40% of the 125I-PVP molecules are predicted to recycle to the medium and 60% are transferred to the lysosomal compartment. The average time for recycling from the prelysosomal compartment to the medium was estimated to be 66 min. For 125I-PVP in the lysosomal compartment, 0.3%/min was transferred back to the medium. These results, and the model developed to interpret the data, predict that there is extensive recycling of material endocytosed by fluid-phase endocytosis to the extracellular environment in rabbit liver parenchymal cells.  相似文献   

11.
rab4 is a ras-like GTP-binding protein that associates with early endosomes in a cell cycle-dependent fashion. To determine its role during endocytosis, we generated stable cell lines that overexpressed mutant or wild-type rab4. By measuring endocytosis, transport to lysosomes, and recycling, we found that overexpression of wild-type rab4 had differential effects on the endocytic pathway. Although initial rates of internalization and degradation were not inhibited, the transfectants exhibited a 3-fold decrease in fluid phase endocytosis as well as an alteration in transferrin receptor (Tfn-R) recycling. Wild-type rab4 caused a redistribution of Tfn-R's from endosomes to the plasma membrane. It also blocked iron discharge by preventing the delivery of Tfn to acidic early endosomes, instead causing Tfn accumulation in a population of nonacidic vesicles and tubules. rab4 thus appears to control the function or formation of endosomes involved in recycling.  相似文献   

12.
The effect of calmodulin antagonists on endocytosis, transcytosis, recycling, and transport to the Golgi apparatus from both the apical and the basolateral plasma membrane of polarized Madin–Darby canine kidney cells has been investigated by using the plant toxin ricin as a membrane marker. The calmodulin antagonists trifluoperazine andN-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) stimulated apical endocytosis of ricin, whereas basolateral endocytosis was unaffected. A stimulation of the apical uptake of the fluid-phase marker horseradish peroxidase by calmodulin antagonists was also found both by biochemical and by ultrastructural studies. Furthermore, W-7 reduced the recycling of ricin to the apical plasma membrane, whereas the recycling to the basolateral plasma membrane was not changed. Transport of ricin to the Golgi apparatus was also selectively affected by the calmodulin antagonist W-7. After basolateral endocytosis of ricin, transport to the Golgi apparatus was reduced, whereas after apical endocytosis the fraction of endocytosed ricin transport to the Golgi apparatus was increased. Transcytosis of ricin from the basolateral to the apical pole was increased in the presence of calmodulin antagonists, whereas these compounds did not have any significant effect on the apical to basolateral transcytosis. Thus, the results obtained indicate that calmodulin is involved in regulation of apical endocytosis and recycling as well as in transcytosis of ricin from the basolateral plasma membrane. Furthermore, the data suggest that calmodulin plays a role in regulation of ricin transport to the Golgi apparatus.  相似文献   

13.
We have developed a chemically defined monolayer culture system for guinea pig seminal vesicle epithelial cells (SVEP). The cells appeared as a polarized monolayer with apical microvilli, tight junctions and desmosome-like junctions, and often dilated intercellular spaces. SVEP expressed epithelial-specific cytokeratins as detected immunocytochemically. Growth was obtained during the first week of culture. In this period, the cells were exposed to unconjugated horseradish peroxidase (HRP), a ricin-peroxidase conjugate (Ri-HRP), or cationized ferritin (CF). HRP was endocytosed without binding to the SVEP surface (fluid-phase endocytosis) and was found mainly in multivesicular endosomes and lysosomes. Ri-HRP and CF, however, were endocytosed following binding to the cell surface. Initially these markers were present in multivesicular endosomes, but later also in smaller tubular and vesicular endosomes, some Golgi-associated elements (but not Golgi stacks), and lysosomes. We conclude that our SVEP culture system may be useful in further studies, on e.g. hormonal regulation of endocytosis and other processes of importance for SVEP maintenance and modulation of the seminal fluid in vivo.  相似文献   

14.
Adsorptive and fluid-phase endocytosis of horseradish peroxidase (PO) was studied in lymph node cells depleted of macrophages, taken from popliteal lymph nodes of rats immunized against PO (anti-PO cells) and against rabbit IgG (anti-rIgG cells) respectively. The enzymatic activity of PO enabled us to measure the amount of PO endocytosed in the cells and to determine its subcellular localization by means of light and electron microscopy. Uptake of PO by anti-PO cells was a saturable process which reached a plateau at approx. 50 μg/ml of PO. After exposure for 3 h to 50–100 μg/ml of PO, anti-PO cells had endocytosed 5–6 ng of PO per 107 cells. Internalized PO was distributed in cells carrying surface receptors for PO, representing about 6% of the total cell population and consisting mainly of large immunocytes (lymphoblasts, plasma cells). Anti-rIgG cells cultured for 3 h with 100 μ/ml of PO endocytosed a very minute, barely detectable amount of PO. The fluid-phase endocytosis of PO was observed by increasing the PO concentration in the culture medium of anti-rIgG cells. Anti-rIgG cells cultured for 3 h with 500 μg/ml of PO endocytosed about 6 ng of PO/107 cells, but no (or very few) stained cells were found. A large number of PO-internalizing anti-rlgG cells were observed only after culture with high PO concentrations (2 or 5 mg/ml), being both large immunocytes and small-to-medium lymphocytes. Endocytic sites of PO in anti-PO large immunocytes and in anti-rIgG small lymphocytes or large immunocytes were the same and consisted of vesicles, tubules or cisternae located near the Golgi apparatus and round or oval bodies scattered throughout the cytoplasm or localized near the Golgi apparatus (lysosomes?). After exposure to PO, anti-PO and anti-rIgG cells were transferred into PO-free medium. The level of intracellular peroxidase activity did not change during the first 6 h of culture. Then a decrease in enzymatic activity occurred, most probably due to a degradation of PO, at the same rate in anti-PO as in anti-rIgG cells. In conclusion, our results show that intracellular pathways of endocytosis and rates of inactivation of PO entering lymphoid cells are the same, whether specific receptors are present or not. This suggests that endocytosis of antigen in antigen-binding cells could reflect a native membrane recycling event.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated Cl(-) channel expressed in the apical plasma membrane in fluid-transporting epithelia. Although CFTR is rapidly endocytosed from the apical membrane of polarized epithelial cells and efficiently recycled back to the plasma membrane, little is known about the molecular mechanisms regulating CFTR endocytosis and endocytic recycling. Myosin VI, an actin-dependent, minus-end directed mechanoenzyme, has been implicated in clathrin-mediated endocytosis in epithelial cells. The goal of this study was to determine whether myosin VI regulates CFTR endocytosis. Endogenous, apical membrane CFTR in polarized human airway epithelial cells (Calu-3) formed a complex with myosin VI, the myosin VI adaptor protein Disabled 2 (Dab2), and clathrin. The tail domain of myosin VI, a dominant-negative recombinant fragment, displaced endogenous myosin VI from interacting with Dab2 and CFTR and increased the expression of CFTR in the plasma membrane by reducing CFTR endocytosis. However, the myosin VI tail fragment had no effect on the recycling of endocytosed CFTR or on fluid-phase endocytosis. CFTR endocytosis was decreased by cytochalasin D, an actin-filament depolymerizing agent. Taken together, these data indicate that myosin VI and Dab2 facilitate CFTR endocytosis by a mechanism that requires actin filaments.  相似文献   

16.
We have assigned the biosynthetic processing steps of cathepsin D to intracellular compartments which are involved in its transport to lysosomes in HepG2 cells. Cathepsin D was synthesized as a 51-kDa proenzyme. After formation of 51-55-kDa intermediates due to processing of N-linked oligosaccharides, procathepsin D was proteolytically processed to an intermediate 44-kDa and the mature 31-kDa enzyme. The intersection of the biosynthetic pathway of cathepsin D with the endocytic pathway was labeled with horseradish peroxidase and monitored biochemically by 3,3'-diaminobenzidine cytochemistry. Horseradish peroxidase was used either as a fluid-phase marker to label the entire endocytic pathway or conjugated to transferrin (Tf) to label endosomes only. Directly after biosynthesis cathepsin D was accessible neither to horseradish peroxidase nor Tf-horseradish peroxidase. Newly synthesized 51-55-kDa species of cathepsin D present in the trans-Golgi reticulum were accessible to both horseradish peroxidase and Tf-horseradish peroxidase. The accessibility of trans-Golgi reticulum to both endocytosed horseradish peroxidase and Tf-horseradish peroxidase was monitored by colocalization with a secretory protein, alpha 1anti-trypsin. The proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurred in compartments which were fully accessible to fluid-phase horseradish peroxidase. Tf-horseradish peroxidase had access to only 20% of 44-kDa cathepsin D while it had no access to 31-kDa cathepsin D. In contrast, the 31-kDa species was completely accessible to fluid-phase horseradish peroxidase. We conclude that proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurs in endosomes, whereas the processing of 44-31-kDa cathepsin D takes place in lysosomes.  相似文献   

17.
When exocytosis of granule contents is induced by nicotine stimulation, glycoprotein III (a chromaffin granule membrane constituent) is exposed on the surface of cultured chromaffin cells, where it may be labeled with an immunocytochemical tracer. The subsequent fate of this glycoprotein after endocytosis was followed at the ultrastructural level using immunogold methods and was analyzed by morphometry. After stimulation exocytosis membranes newly inserted into the plasma membrane labeled with gold particles for glycoprotein III were found to be endocytosed via coated vesicles and finally found in organelles devoid of chromogranin A, the major secretory granule protein. At intervals between 30 min and 24 h after cell stimulation and immunolabeling, most labeled structures were identified by two different morphological approaches as prelysosomes and lysosomes. In contrast with results obtained on freshly isolated chromaffin cells, it is thus concluded that in cultured cells granule membrane recycling into new granules does not occur. It is suggested that the fate of granule membrane endocytosed after cell stimulation may be influenced by the external conditions to which cells are previously exposed.  相似文献   

18.
Receptor down-modulation is the key mechanism by which G protein-coupled receptors (GPCRs) prevent excessive receptor signaling in response to agonist stimulation. Recently, the trans-Golgi network (TGN) has been implicated as a key checkpoint for receptor endocytosis and degradation. Here, we investigated the involvement of the TGN in down-modulation of β1-adrenergic receptor in response to persistent isoprotenerol stimulation. Immunofluorescent staining showed that ~50% of endocytosed β1AR colocalized with TGN-46 at 5 h. Disruption of the TGN by brefeldin A (BFA) led to the robust accumulation of endocytosed β1AR in Rab11(+) recycling endosomes, inhibited β1AR entry into LAMP1(+) lysosomes, and as a result enhanced β1AR recycling to the plasma membrane. The lysosomotropic agent, chloroquine, arrested the majority of endocytosed β1AR in the TGN by 4 h. Immunoblot analysis showed that either disruption of the TGN or blockage of the lysosome prevented β1AR degradation. Co-expression of GFP-arrestin-3 in β1AR cells increased the endocytosis of β1AR and facilitated its entry to the TGN but inhibited recycling to the plasma membrane. Arrestin-3-induced inhibition of β1AR recycling was reversed by BFA treatment, whereas chloroquine induced the accumulation of arrestin-3 with β1AR in the TGN. These results demonstrate for the first time that the TGN acts as a checkpoint for both the recycling and down-regulation of β1AR and that arrestin-3 not only mediates β1AR endocytosis but also its recycling through the TGN.  相似文献   

19.
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in relation to the membrane-bound and fluid-phase endocytosis in bladder superficial urothelial cells. By using primary urothelial cultures in the environment without mechanical stimuli, we studied the constitutive endocytosis. Four new findings emerge from our study. First, in highly differentiated superficial urothelial cells with strong uroplakin expression, the endocytosis of fluid-phase endocytotic markers was 43% lower and the endocytosis of membrane-bound markers was 86% lower compared to partially differentiated cells with weak uroplakin expression. Second, superficial urothelial cells have 5–15-times lower endocytotic activity than MDCK cells. Third, in superficial urothelial cells the membrane-bound markers are delivered to lysosomes, while fluid-phase markers are seen only in early endocytotic compartments, suggesting their kiss-and-run recycling. Finally, we provide the first evidence that in highly differentiated cells the uroplakin-positive membrane regions are excluded from internalization, suggesting that uroplakins hinder endocytosis from the apical plasma membrane in superficial urothelial cells and thus maintain optimal permeability barrier function.  相似文献   

20.
The obligate intracellular protozoan Toxoplasma gondii resides within a specialized parasitophorous vacuole (PV), isolated from host vesicular traffic. In this study, the origin of parasite cholesterol was investigated. T. gondii cannot synthesize sterols via the mevalonate pathway. Host cholesterol biosynthesis remains unchanged after infection and a blockade in host de novo sterol biosynthesis does not affect parasite growth. However, simultaneous limitation of exogenous and endogenous sources of cholesterol from the host cell strongly reduces parasite replication and parasite growth is stimulated by exogenously supplied cholesterol. Intracellular parasites acquire host cholesterol that is endocytosed by the low-density lipoprotein (LDL) pathway, a process that is specifically increased in infected cells. Interference with LDL endocytosis, with lysosomal degradation of LDL, or with cholesterol translocation from lysosomes blocks cholesterol delivery to the PV and significantly reduces parasite replication. Similarly, incubation of T. gondii in mutant cells defective in mobilization of cholesterol from lysosomes leads to a decrease of parasite cholesterol content and proliferation. This cholesterol trafficking to the PV is independent of the pathways involving the host Golgi or endoplasmic reticulum. Despite being segregated from the endocytic machinery of the host cell, the T. gondii vacuole actively accumulates LDL-derived cholesterol that has transited through host lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号