首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Forearm pronation and supination, and increased muscular activity in the wrist extensors have been both linked separately to work-related injuries of the upper limb, especially humeral epicondylitis. However, there is a lack of information on forearm torque strength at ranges of elbow and forearm angles typical of industrial tasks. There is a need for strength data on forearm torques at different upper limb angles to be investigated. Such a study should also include the measurement of muscular activity for the prime torque muscles and also other muscles at possible risk of injury due to high exertion levels during tasks requiring forearm torques.Twenty-four male subjects participated in the study that involved maximum forearm torque exertions for the right arm, in the pronation and supination directions, and at four elbow and three forearm rotation angles. Surface EMG (SEMG) was used to evaluate the muscular activity of the pronator teres (PT), pronator quadratus (PQ), biceps brachi (BB), brachioradialis (BR), mid deltoid (DT) and the extensor carpi radialis brevis (ECRB) during maximum torque exertions. Repeated measures ANOVA indicated that both direction and forearm angle had a significant effect on the maximum torques (p<0.05) while elbow angle and the interactions were highly significant (p<0.001). The results revealed that supination torques were stronger overall with a mean maximum value of 16.2 Nm recorded for the forearm 75% prone. Mean maximum pronation torque was recorded as 13.1 Nm for a neutral forearm with the elbow flexed at 45 degrees. The data also indicated that forearm angle had a greater effect on supination torque than pronation torque. Supination torques were stronger for the mid-range of elbow flexion, but pronation torques increased with increasing elbow extension. The strength profiles for the maximum torque exertions were reflected in the EMG changes in the prime supinators and pronators. In addition, the EMG data expressed as the percentage of Maximum Voluntary Electrical activity (MVE), revealed high muscular activity in the ECRB for both supination (26-43% MVE) and pronation torques (17-55% MVE). The results suggest that the ECRB acts as a stabiliser to the forearm flexors for gripping during pronation torques depending on forearm angle, but acts as a prime mover in wrist extension for supination torques with little effect of elbow and forearm angle. This indicates a direct link between forearm rotations against resistance and high muscular activity in the wrist extensors, thereby increasing stress on the forearm musculo-skeletal system, especially the lateral epicondyle.  相似文献   

2.
Motions of the forearm induced by electrical stimulation to two elbow flexors (brachioradialis: BR, biceps brachii: BB) were examined in five healthy human subjects. Stainless steel wire electrodes were implanted percutaneously into each motor point of the muscles. The muscles were stimulated separately with a computer-controlled multi-channel stimulator. The motions were taken with a digital video system. Angular changes of the motions in elbow flexion/extension and forearm pronation/supination were measured. Electromyograms (EMG) of BR, BB, and the triceps brachii (TB) were recorded. Electrical stimulation to BR induced a motion of flexion and that to BB motions of flexion and supination. The stimulation to BR with an adequate intensity provided holding of flexion with the prone forearm in all the subjects. In this situation, additional stimulation to BB resulted in motions of flexion and supination. However, the additional stimulation accompanied with a decrease of the stimulation intensity for BR provided a motion of supination with maintenance of the flexion in all the subjects. Since during the stimulation BR, BB, and TB showed no voluntary contraction in EMG, it is suggested that modulation of contraction between BR and BB by the stimulation can produce force in supination with keeping constant force in flexion to support the weight below the elbow.  相似文献   

3.
The relationships of EMG and muscle force with elbow joint angle were investigated for muscle modelling purposes. Eight subjects had their arms fixed in an isometric elbow jig where the biceps brachii was electrically stimulated (30 Hz) and also in maximum voluntary contraction (MVC). Biceps EMG and elbow torque transduced at the wrist were recorded at 0.175 rad intervals through 1.75 rad of elbow extension. The results revealed that while the torque-length relationship displayed the classic inverted U pattern in both evoked and MVC conditions, the force-length relationship displayed a monotonically increasing pattern. Analyses of variance of the EMG data showed that there were no significant changes in the EMG amplitudes for the different joint angles during evoked or voluntary contractions. The result also showed that electrical stimulation can effectively isolated the torque-angle and force-length relationships of the biceps brachii and that the myoelectric signal during isometric contraction is uniform regardless of the length of the muscle or the joint angle.  相似文献   

4.
A technique was developed for calculating the torque generated by two individual muscles (biceps brachii and brachioradialis) that contribute to the isometric flexion of the elbow. The external torque is the sum of individual torques which are unknown. Each individual torque (CB or CBR) can be related to the corresponding integrated surface EMG (QB or QBR) by means of coefficients (pB or PBR). A block of several equations C = pB QB + pBR QBR is obtained by exploring several experimental conditions. In these conditions, isometric flexion efforts of the elbow were associated to isometric efforts of supination or pronation so as to vary integrated EMG by reciprocal inhibition. By means of a least square method it was possible to know the coefficients PB and PBR. With these coefficients, it was possible to calculate the individual torques generated by the biceps brachii and brachioradialis muscles in each experimental condition.  相似文献   

5.
This study tested the common assumption that skeletal muscle shortens uniformly in the direction of its fascicles during low-load contraction. Cine phase contrast magnetic resonance imaging was used to characterize shortening of the biceps brachii muscle in 12 subjects during repeated elbow flexion against 5 and 15% maximum voluntary contraction (MVC) loads. Mean shortening was relatively constant along the anterior boundary of the muscle and averaged 21% for both loading conditions. In contrast, mean shortening was nonuniform along the centerline of the muscle during active elbow flexion. Centerline shortening in the distal region of the biceps brachii (7.3% for 5% MVC and 3.7% for 15% MVC) was significantly less (P < 0.001) than shortening in the muscle midportion (26.3% for 5% MVC and 28.2% for 15% MVC). Nonuniform shortening along the centerline was likely due to the presence of an internal aponeurosis that spanned the distal third of the longitudinal axis of the biceps brachii. However, muscle shortening was also nonuniform proximal to the centerline aponeurosis. Because muscle fascicles follow the anterior contour and centerline of the biceps brachii, our results suggest that shortening is uniform along anterior muscle fascicles and nonuniform along centerline fascicles.  相似文献   

6.
This study sought to resolve a longstanding debate of the function of anconeus. Intramuscular and surface electromyography electrodes recorded muscle activity from two regions of anconeus and from typical elbow flexion and extension muscles. Eleven participants performed pronation–supination around the medial and lateral axes of the forearm, elbow flexion–extension in pronation, supination and neutral positions of the forearm, and gripping. Maximal voluntary contractions (MVC) and submaximal (10% MVC) force-matching tasks were completed. Activity varied between longitudinal (AL) and transverse (AT) segments of anconeus. Although both muscle regions were active across multiple directions (including opposing directions), AL was more active during pronation than supination, whereas AT showed no such difference. During pronation, activity of AL and AT was greatest about the lateral forearm axis. AT was more active during elbow extension with the forearm in pronation, whereas AL did not differ between pronated and neutral forearm alignment. These findings are consistent with the proposal that AL makes a contribution to control of abduction of the ulna during forearm pronation. Different effects of forearm position on AL and AT activity during elbow extension may be explained by the anatomical differences between the regions. These data suggest anconeus performs multiple functions at the elbow and forearm and this varies between anatomically distinct regions of the muscle.  相似文献   

7.
The aim of this study was to investigate the relationship between biceps brachii hardness using the transient elastography technique, and its activity level by quantifying the surface electromyographic signal (sEMG). Ten healthy subjects volunteered for this protocol. To assess the maximal biceps brachii myoelectric activity (sEMG-RMSm), subjects had to achieve their maximal voluntary contraction trial during an elbow flexion effort. They were then asked to perform an isometric biceps sEMG-RMS ramp trial in elbow flexion from 0% to 50% of their sEMG-RMSm in 120 s. A low-frequency pulse was sent every 5 s during all trials by an innovative shear elasticity probe previously placed over the belly of the biceps brachii allowing the calculation of a transverse shear modulus. The main results of this study were (i) the finding of a systematic linear relationship between the biceps brachii transverse shear moduli and the corresponding sEMG-RMS values. This was not the case when plotting transverse shear modulus versus the elbow flexion torque production. Therefore, the computation of a hardness index from the slope of individual transverse shear modulus-sEMG-RMS linear relationship was enabled; (ii) It was also found that the higher is the rest shear modulus, the lower is the hardness index, indicating that the transverse shear modulus change during contraction depends on its level at rest. Therefore, this non-invasive technique could be useful in the medical field to explore deep muscles which are unreachable by classical testing methods. It could also be applied for the follow-up of neuromuscular diseases inducing stiffness changes such as in Duchenne muscular dystrophy.  相似文献   

8.
This study aimed to: (1) test the repeatability of Supersonic Shear Imaging measures of muscle shear elastic modulus of four elbow flexor muscles during isometric elbow flexion with ramped torque; (2) determine the relationship between muscle shear elastic modulus and elbow torque for the four elbow flexor muscles, and (3) investigate changes in load sharing between synergist elbow flexor muscles with increases in elbow flexor torque. Ten subjects performed ten isometric elbow flexions consisting of linear torque ramps of 30-s from 0 to 40% of maximal voluntary contraction. The shear elastic modulus of each elbow flexor muscle (biceps brachii long head [BB(LH)], biceps brachii short head [BB(SH)], brachialis [BA], and brachoradialis [BR]) and of triceps brachii long head [TB] was measured twice with individual muscles recorded in separate trials in random order. A good repeatability of the shape of the changes in shear elastic modulus as a function of torque was found for each elbow flexor muscle (r-values: 0.85 to 0.94). Relationships between the shear elastic modulus and torque were best explained by a second order polynomial, except BA where a higher polynomial was required. Statistical analysis showed that BB(SH) and BB(LH) had an initial slow change at low torques followed by an increasing rate of increase in modulus with higher torques. In contrast, the BA shear elastic modulus increased rapidly at low forces, but plateaued at higher forces. These results suggest that changes in load sharing between synergist elbow flexors could partly explain the non-linear EMG-torque relationship classically reported for BB during isometric efforts.  相似文献   

9.
The electrical activity of the biceps brachii and pronator teres muscles is studied through the prono-supination of the forearm in some anisometrical conditions (dynamic work) when the inertia of the mobile system and the elbow position are being varied. The subjects are required to perform pronation, supination and flexion movements, either isolated or combined. From the findings obtained when the integrated electrical activity (Q) is related to the mechanical work (W), one can conclude that a. the Q-W linear relationship seems to characterize the chief function of a muscle, b. the slope of the Q-W relationship depends on the elbow position, c. the pronator muscles do not inhibit in a selective manner the biceps supinating function. So a bifunctional muscle seems to act as a whole.  相似文献   

10.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

11.
The aim of this study was to assess whether cerebral palsy patients can use biceps brachii for supination during movement tasks requiring supination and pronation. 3D upper extremity kinematic and EMG-data of 12 patients (mean age 13 y 8 mo ± 36 mo) were compared to 10 healthy age-matched controls. Significant difference in biceps brachii activation between maximal isolated pronation and supination in both groups showed that it is possible for CP patients to use biceps brachii for supination. Performance of reach-to-grasp with either pronation or supination showed similar activation patterns as during isolated tasks in both groups, although increased biceps brachii activation likely also hampered performance of reach-to-grasp in the patient group by causing increased, and possibly unwanted elbow flexion. However, the functional effect of this flexion for supination purposes cannot be ruled out. Therefore, one should be cautious with simply weakening biceps brachii when the purpose is to improve functional reach. Ideally treatment might focus more on changing the flexion moment/supination moment ratio of biceps toward a stronger supination function.  相似文献   

12.
The purpose of this study was to examine the time-of-day effects on muscle fatigue and recovery process following an isometric fatiguing contraction. Sixteen male subjects were tested at two times (06:00h and 18:00h) and were requested to perform a sustained submaximal contraction of the elbow flexors, consisting in maintaining 40% of their absolute strength as long as they could. Isometric maximal voluntary contractions (MVC) were performed before (Pre), immediately after (Post), and up to 10min after the endurance task. Endurance time, peak torque (PT) and electromyographic (EMG) activities of the biceps brachii and triceps brachii were recorded and analysed. Results showed that under Pre-test conditions, PT developed at 18:00h was higher than at 06:00h. No time-of-day effect appears for the endurance time and EMG activities during the test. No time-of-day effect was observed on either MVC or EMG recovery. From the results of this study, it seems that both muscle fatigue and recovery process are not time-of-day dependent. We conclude that circadian rhythm of the force do not influence the evaluation of muscle capacities during a submaximal exercise corresponding at 40% of MVC.  相似文献   

13.
Innovative applications of non-linear time series analysis have recently been used to investigate physiological phenomena. In this study, we investigated the feasibility of using the correlation integral to monitor the localized muscle fatigue process in the biceps brachii during sustained maximal efforts. The subjects performed isometric maximum contractions until failure in elbow flexion (90 degrees from neutral). The median and the 70th percentile frequency of the Surface electromyography (SEMG) power spectrum, the integrated SEMG, and the Correlation Integral (CI) were evaluated during the trials. The linear correlation between these variables and the elbow torque production was used to quantify the ability of a parameter to follow the fatiguing process. The CI had the highest linear correlation with torque (0.77 (0.12SD)), while the spectral indices correlations with torque were much lower. The decreasing trend of the torque production was followed by the spectral indices for only the beginning part of the contraction, while the CI increased sharply after the torque production fell to about 0.60 of the MVC. This suggests that the CI is sensitive to different changes of the SEMG signal during fatigue than the spectral variables.  相似文献   

14.
One way to improve the weak triceps brachii voluntary forces of people with chronic cervical spinal cord injury may be to excite the paralyzed or submaximally activated fraction of muscle. Here we examined whether elbow extensor force was enhanced by vibration (80 Hz) of the triceps or biceps brachii tendons at rest and during maximum isometric voluntary contractions (MVCs) of the elbow extensors performed by spinal cord-injured subjects. The mean +/- SE elbow extensor MVC force was 22 +/- 17.5 N (range: 0-23% control force, n = 11 muscles). Supramaximal radial nerve stimuli delivered during elbow extensor MVCs evoked force in six muscles that could be stimulated selectively, suggesting potential for force improvement. Biceps vibration at rest always evoked a tonic vibration reflex in biceps, but extension force did not improve with biceps vibration during triceps MVCs. Triceps vibration induced a tonic vibration reflex at rest in one-half of the triceps muscles tested. Elbow extensor MVC force (when >1% of control force) was enhanced by vibration of the triceps tendon in one-half of the muscles. Thus triceps, but not biceps, brachii tendon vibration increases the contraction strength of some partially paralyzed triceps brachii muscles.  相似文献   

15.
We determined the effect of elbow joint angle on the short-(M1) and long-latency stretch reflex (M2 and M3) responses of the elbow flexion synergists, the brachioradialis (BR), and the biceps brachii (BB), during weak isometric elbow flexion tasks. The elbow joint angle was 35,75 and 115 degrees (full-extension angle was 0 degrees ), and the muscle contraction level was 0,3 and 6% of maximum voluntary contraction (MVC) of the BR. In BR, the M1, M2 and M3 responses were significantly greater at 75 and 115 degrees than at 35 degrees. On the other hand, in BB, the M2 response was significantly greater at 35 degrees than at 75 and 115 degrees, while the M1 and M3 responses were not significantly different among the elbow joint angles. These results indicated that the stretch reflex responses of BR might be dependent on the changes of muscle length in stretch stimulus, while the M2 response of BB might not be dependent on the actual stimulus intensity. Therefore, we concluded that the M2 of BB might be modulated selectively by a higher reflex center in accordance with relationships of the mechanical advantages between synergistic muscles.  相似文献   

16.
In this paper, a calibration method to compensate for changes in SEMG amplitude with joint angle is introduced. Calibration factors were derived from constant amplitude surface electromyogram (SEMG) recordings from the biceps brachii (during elbow flexion) and the triceps brachii (during elbow extension) across seven elbow joint angles. SEMG data were then recorded from the elbow flexors (biceps brachii and brachioradialis) and extensors (triceps brachii) during isometric, constant force flexion and extension contractions at the same joint angles. The resulting force at the wrist was measured. The fast orthogonal search method was used to find a mapping between the system inputs – estimated SEMG amplitudes and joint angle – and the system output – measured force, for both calibrated and non-calibrated SEMG data. Models developed with calibrated data yielded a statistically significant improvement in force estimation compared to models developed with non-calibrated data, suggesting that the calibration method can compensate for changes in the SEMG–force relationship with changing joint angle. It was also found that the number of non-linear, joint angle-dependent terms used in the SEMG–force model was reduced with calibration. Additionally, initial inter-session analysis performed for four subjects suggests that calibration values can be used for subsequent recording sessions, and different output force levels.  相似文献   

17.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

18.
The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.  相似文献   

19.
The purpose of the present study was to determine whether the motor unit (MU) recruitment strategy of the agonist and antagonist muscles in the dominant arm differs from that in the non-dominant arm. The median frequency (MF) of the power density spectrum (PDS) of the electromyogram (EMG) was used as a tracking parameter to describe the MU recruitment. In 8 subjects the EMG was recorded from the biceps brachii and triceps brachii of each limb during isometric elbow flexion performed in a ramp fashion. Force was increased from 0 to 100% of the maximum voluntary contraction (MVC) in 3 s following a track displayed on an oscilloscope. When comparing the dominant versus non-dominant arm we found no statistical difference in the MU recruitment pattern of the biceps brachii and the triceps. Because the dominant arm was not always the better performing arm, we grouped the data according to the ability of the subjects to track the ramp signal. In this case we found a statistically significant difference between the better and worse performing arm in the full MU recruitment of the biceps. A more precise and accurate control of the increase in force was obtained when the central nervous system selected a slower and prolonged recruitment of MUs in the agonist muscle.  相似文献   

20.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号