首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of phytophagous stinkbugs are associated with specific bacterial symbionts in their alimentary tracts. The sloe bug Dolycoris baccarum (Linnaeus), a notorious pest of diverse crops, possesses a number of sac-like tissues, called crypts, in a posterior section of the midgut, wherein a specific bacterial symbiont colonizes. Here we characterized the symbiotic bacterium of D. baccarum by histological analysis, molecular phylogeny, and diagnostic PCR with a specific primer set. The cloning and sequencing analyses of bacterial 16S rRNA genes and fluorescent in situ hybridization demonstrated that the sloe bug is associated with a single species of Gammaproteobacteria in the midgut crypts. Molecular phylogenetic analysis strongly suggested that the symbiont should be placed in the genus Pantoea of the Enterobacteriaceae. Diagnostic PCR and egg surface sterilization with formalin indicated the stinkbug vertically transmits the Pantoea symbiont via egg-smearing. The sterilization-produced aposymbiotic nymphs showed high mortality and no insects reached adulthood. In addition, the Pantoea symbiont was uncultivable outside the insect host, indicating an obligate and intimate host-symbiont association.  相似文献   

2.
The anaerobic free-living ciliate, Trimyema compressum, is known to harbor both methanogenic archaeal and bacterial symbionts in the cytoplasm. To clarify their phylogenetic belongings, a full-cycle rRNA approach was applied to this symbiosis. Phylogenetic analysis showed that the methanogenic symbiont was related to Methanobrevibacter arboriphilicus, which was distantly related to symbionts found in other Trimyema species. This result suggested that Trimyema species do not require very specific methanogenic symbionts, and symbiont replacement could have occurred in the history of Trimyema species. On the other hand, the bacterial symbiont was located near the lineage of the family Syntrophomonadaceae in the phylum Firmicutes. The sequence similarity between the bacterial symbiont and the nearest species was 85%, indicating that bacterial symbionts may be specific to the Trimyema species. The elimination of bacterial symbionts from the ciliate cell by antibiotic treatment resulted in considerably decreased host growth. However, it was not restored by stigmasterol addition (<2 μg ml−1), which was different from the previous report that showed that the symbiont-free strain required exogenous sterols for growth. In addition, the decline of host growth was not accompanied by host metabolism shift toward the formation of more reduced products, which suggested that the contribution of bacterial symbionts to the host ciliate was not a dispose of excessive reducing equivalent arising from the host’s fermentative metabolism as methanogenic symbionts do. This study showed that bacterial symbionts make a significant contribution to the host ciliate by an unknown function and suggested that interactions between bacterial symbionts and T. compressum are more complicated than hitherto proposed.  相似文献   

3.
Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of the Burkholderia in their midgut crypts. In the lygaeoid and coreoid stinkbugs, development of midgut crypts in their alimentary tract was coincident with the Burkholderia infection, suggesting that the specialized morphological configuration is pivotal for establishment and maintenance of the symbiotic association. The Burkholderia symbionts were easily isolated as pure culture on standard microbiological media, indicating the ability of the gut symbionts to survive outside the host insects. Molecular phylogenetic analysis showed that the gut symbionts of the lygaeoid and coreoid stinkbugs belong to a β-proteobacterial clade together with Burkholderia isolates from soil environments and Burkholderia species that induce plant galls. On the phylogeny, the stinkbug-associated, environmental and gall-forming Burkholderia strains did not form coherent groups, indicating host–symbiont promiscuity among these stinkbugs. Symbiont culturing revealed that slightly different Burkholderia genotypes often coexist in the same insects, which is also suggestive of host–symbiont promiscuity. All these results strongly suggest an ancient but promiscuous host–symbiont relationship between the lygaeoid/coreoid stinkbugs and the Burkholderia gut symbionts. Possible mechanisms as to how the environmentally transmitted promiscuous symbiotic association has been stably maintained in the evolutionary course are discussed.  相似文献   

4.

Background  

Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs.  相似文献   

5.
Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae.  相似文献   

6.
We have analyzed the effects of Toxoneuron nigriceps parasitization on the midgut development of its host Heliothis virescens. In parasitized H. virescens larvae, the midgut epithelium undergoes a complete replacement, which is qualitatively not different to that observed in synchronous unparasitized larvae, with similar temporal profiles of cell death and metabolic activity. However, the whole gut replacement process is significantly delayed in parasitized larvae, with complete differentiation of the new gut epithelium being observed 4 days later than in unparasitized controls. The administration of juvenile hormone before commitment and of 20-hydroxyecdysone (20E) after commitment delays and fosters, respectively, the replacement process of the midgut epithelium; moreover, the injection of 20E into developmentally arrested and 20E-deficient host last-instar larvae parasitized by T. nigriceps immediately triggers regular gut development. These hormone-based experiments suggest that endocrine alterations in the larval host, induced by T. nigriceps parasitism, are responsible for the temporal alterations in the gut replacement process. The role of this parasitoid-induced developmental change in the host regulation process is discussed. This work was partially supported by FAR 2006–2007 (University of Insubria) to G.T., by MIUR-FIRB-COFIN (grant no. RBNE01YXA8/2004077251), and by the Centro Grandi Attrezzature (University of Insubria).  相似文献   

7.
Association between bacteria Photorhabdus and their nematode hosts Heterorhabditis represents one of the emerging models in symbiosis studies. In this study, we isolated the bacterial symbionts of the nematode Heterorhabditis georgiana. Using gyrB sequences for phylogenetic analysis, these strains were shown to be part of the species of Photorhbdus luminescens but with clear separation from currently recognized subspecies. Physiological properties and DNA–DNA hybridization profiles also supported the phylogenetic relationship of these strains. Therefore, a new subspecies, Photorhabdus luminescens subsp. kleinii subsp. nov., is proposed with the type strain KMD37T (=DSM 23513 =ATCC =NRRL B-59419).  相似文献   

8.
The southern green stinkbug Nezara viridula (Linnaeus) has a number of sac-like outgrowths, called crypts, in a posterior section of the midgut, wherein a specific bacterial symbiont is harbored. In previous studies on N. viridula from Hawaiian populations, experimental elimination of the symbiont caused few fitness defects in the host insect. Here we report that N. viridula from Japanese populations consistently harbors the same gammaproteobacterial gut symbiont, but, in contrast with previous work, experimental sterilization of the symbiont resulted in severe nymphal mortality, indicating an obligate host–symbiont relationship. Considering worldwide host–symbiont association and these experimental data, we suggest that N. viridula is generally and obligatorily associated with the gut symbiont, but that the effect of the symbiont on host biology may be different among geographic populations. Possible environmental factors that may affect the host–symbiont relationship are discussed.  相似文献   

9.
Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.  相似文献   

10.
Social insects are excellent invaders that have had negative impacts on native species and humans. Many invasive species move from warmer to cooler climates. For these species, thermal adaptations may both be important for their ability to invade and to limit their invasion range. The invasion of Polistes dominulus into North America provides an example of a primitively eusocial invader from a warmer climate. We studied the differences in thermoregulation between P. dominulus and the native P. fuscatus. We found that, during flight, thorax temperature in P. fuscatus was less affected by ambient temperature than thorax temperature of P. dominulus. We also found that P. dominulus and P. fuscatus showed different patterns of warming after removal from a cold environment. Unlike P. dominulus, live P. fuscatus never fully cooled down in a cold environment. P. fuscatus also reached their relative minimum flight temperatures earlier than P. dominulus, but P. dominulus maintained higher elevated temperatures for longer. These differences in thermoregulatory ability suggest that the lower winter survival of P. dominulus could be offset by a greater thermal tolerance during flight, while the lower thermal tolerance of P. fuscatus in flight is offset somewhat by better thermoregulatory ability.  相似文献   

11.
To study phylogenetic relationships among Okinawan soft corals of the genus Clavularia, the ribosomal internal transcribed spacer sequences of host corals and the 18S rDNA sequences of symbiotic algae were analyzed. The molecular phylogenetic trees of hosts showed that a prostanoid-containing species, Clavularia viridis, is deeply diverged from other species of Clavularia which do not biosynthesize the prostanoids as the main secondary metabolites. Comparison of their trees suggested poor phylogenetic concordance between hosts and symbionts.  相似文献   

12.
Wolbachia pipientis is an obligate intracellular endosymbiont of a range of arthropod species. The microbe is best known for its manipulations of host reproduction that include inducing cytoplasmic incompatibility, parthenogenesis, feminization, and male-killing. Like other vertically transmitted intracellular symbionts, Wolbachias replication rate must not outpace that of its host cells if it is to remain benign. The mosquito Aedes albopictus is naturally infected both singly and doubly with different strains of Wolbachia pipientis. During diapause in mosquito eggs, no host cell division is believed to occur. Further development is triggered only by subsequent exposure of the egg to water. This study uses diapause in Wolbachia-infected Aedes albopictus eggs to determine whether symbiont replication slows or stops when host cell division ceases or whether it continues at a low but constant rate. We have shown that Wolbachia densities in eggs are greatest during embryonation and then decline throughout diapause, suggesting that Wolbachia replication is dependent on host cell replication.  相似文献   

13.
Sponges (Porifera) are filter feeders that take up microorganisms from seawater and digest them by phagocytosis. At the same time, many sponges are known to harbor massive consortia of symbiotic microorganisms, which are phylogenetically distinct from those in seawater, within the mesohyl matrix. In the present study, feeding experiments were performed to investigate whether phylogenetically different bacterial isolates, hereafter termed “food bacteria,” microbial seawater consortia, and sponge symbiont consortia are taken up and processed differently by the host sponge. Aplysina aerophoba retained high numbers of bacterial isolates and microbial seawater consortia with rates of up to 2.76 × 106 bacteria (g sponge wet weight)–1 h–1, whereas the retention of sponge symbionts was lower by nearly two orders of magnitude [5.37 × 104 bacteria (g sponge wet weight)−1 h–1]. In order to visualize the processing of a food bacterium within sponge tissues, the green fluorescent protein-labeled Vibrio strain MMW1, which had originally been isolated from A. aerophoba, was constructed. Incubation of this strain with A. aerophoba and subsequent visualization in tissue cryosections showed its presence in the choanocytes and/or endopinacocytes lining the canals but, unlike latex beads, not in deeper regions of the mesohyl, which suggests digestion of the bacteria upon contact with the host. Denaturing gradient gel electrophoresis (DGGE) was performed on the incubation seawater to monitor the changes in phylogenetic composition after incubation of the sponge with either seawater or sponge symbiont consortia. However, the DGGE experiment provided no evidence for selective processing of individual lineages by the host sponge. In conclusion, this study extends early studies by Wilkinson et al. (Proc R Soc London B 220:519–528, 1984) that sponges, here A. aerophoba, are able to differentiate between food bacteria and their own bacterial symbionts.  相似文献   

14.
The green rice leafhopper Nephotettix cincticeps (Uhler) is a commonly distributed pest of rice in East Asia. Early histological studies describe the presence of two bacteriome-associated symbionts and a rickettsial microorganism in N. cincticeps, but their microbiological affiliations have been elusive. We identified these bacterial symbionts using modern microbiological techniques. Cloning and sequencing of the 16S ribosomal RNA gene from dissected bacteriomes yielded two major and a minor bacterial sequences: a major sequence was placed in the Bacteroidetes clade of Sulcia muelleri, an ancient symbiont lineage associated with diverse hemipteran insects; another major sequence was allied to a β-proteobacterial sequence from a leafhopper Matsumuratettix hiroglyphicus; the minor sequence fell in the α-proteobacterial genus Rickettsia. In situ hybridization and transmission electron microscopy showed that the Sulcia symbiont and the β-proteobacterial symbiont are harbored within different types of bacteriocytes that constitute the outer and inner regions of the bacteriome, respectively. Oral administration of tetracycline to nymphal N. cincticeps resulted in retarded growth, high mortality rates, and failure in adult emergence, suggesting important biological roles of the symbionts for the host insect. The designation Candidatus Nasuia deltocephalinicola is proposed for the β-proteobacterial symbiont clade associated with N. cincticeps and allied leafhoppers of the subfamily Deltocephalinae.  相似文献   

15.
Summary The biology of the invasive Polistes dominulus and the native P. fuscatus was compared at a field site in Rochester, Michigan over a two-year period. Colonies nesting semi-naturally in plywood nestboxes were studied using videography, extensive surveys, and colony-specific marking of gynes.Both single- and multiple-foundress colonies of P. dominulus were significantly more productive than comparable colonies of P. fuscatus. The disparity in productivity was significantly more pronounced in single-foundress colonies than in multiple-foundress colonies. P. dominulus had significantly shorter larval and pupal development times than P. fuscatus, which allowed P. dominulus to produce its first workers about a week earlier than P. fuscatus. P. dominulus had a number of additional advantages over P. fuscatus that contributed to its productivity including (1) significantly less parasitism by Strepsiptera, (2) significantly greater probability of renesting after predation by raccoons, (3) significantly lower usurpation pressures, and (4) possibly longer foraging days . The recovery of colony-marked foundresses indicated that gynes of P. dominulus suffered significantly greater mortality than gynes of P. fuscatus during winter diapause and that foundresses of both species were equally, strongly philopatric.P. dominulus is likely replacing P. fuscatus in many areas of southeastern Michigan via indirect or exploitative competition. The two species may be competing for nest sites.Received 7 July 2003; revised 10 October 2003; accepted 3 November 2003.  相似文献   

16.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

17.
18.
Hou L  Wang JX  Zhao XF 《Amino acids》2011,40(3):953-961
Midgut remodeling is a complex physiological process in holometabolous insects. During midgut remodeling, the larval midgut is decomposed by apoptosis or autophagy during metamorphosis, and the degraded larval midgut is partially absorbed as nutrients by the imaginal midgut for its formation. The molecular mechanism involved in this process is not clear. Here, we found that a Rab protein, which we have named HaRab32, is related to the organogenesis of insect imaginal midgut. Results show that HaRab32 is up-regulated in epidermis and midgut during metamorphosis. Its expression could be up-regulated by 20E. Immunohistochemistry shows Rab32 is distributed in the epithelium of the imaginal midgut during metamorphosis. Knockdown of HaRab32 by RNA interference disturbs the formation of the imaginal midgut. These data imply HaRab32 plays important roles in midgut remodeling by participating in the imaginal midgut formation.  相似文献   

19.
Studies of microbial associations of intertidal isopods in the primitive genus Ligia (Oniscidea, Isopoda) can help our understanding of the formation of symbioses during sea-land transitions, as terrestrial Oniscidean isopods have previously been found to house symbionts in their hepatopancreas. Ligia pallasii and Ligia occidentalis co-occur in the high intertidal zone along the Eastern Pacific with a large zone of range overlap and both species showing patchy distributions. In 16S rRNA clone libraries mycoplasma-like bacteria (Firmicutes), related to symbionts described from terrestrial isopods, were the most common bacteria present in both host species. There was greater overall microbial diversity in Ligia pallasii compared with L. occidentalis. Populations of both Ligia species along an extensive area of the eastern Pacific coastline were screened for the presence of mycoplasma-like symbionts with symbiont-specific primers. Symbionts were present in all host populations from both species but not in all individuals. Phylogenetically, symbionts of intertidal isopods cluster together. Host habitat, in addition to host phylogeny appears to influence the phylogenetic relation of symbionts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号