首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物逆境胁迫耐受性启动子的研究进展   总被引:1,自引:0,他引:1  
逆境胁迫如干旱、极端温度、损伤等非生物胁迫和病虫害等生物胁迫严重影响植物的生长发育及产量。逆境胁迫耐受性启动子能够接受逆境条件下的诱导信号,激活植物体内胁迫应答基因的表达,使植物感知并适应逆境。本文对逆境胁迫耐受性启动子的克隆及功能研究情况进行综合分析,主要包括抗旱、耐盐、耐高温、抗冻、耐损伤、抗病和抗虫基因启动子。  相似文献   

2.
林海建  张志明  沈亚欧  高世斌  潘光堂 《遗传》2009,31(12):1192-1204
逆境胁迫影响植物的正常生长, 导致作物减产, 甚至绝收。提高作物的抗逆性一直是作物遗传育种学家追求的目标, 大量研究也正试图揭示这一复杂的生物学机制。传统的从生理生化水平到单一基因的研究都难以揭示植物复杂的抗逆机制, 而基因芯片(Gene chip)的应用使得这一目标成为了可能, 基因芯片从整个转录水平入手, 能够揭示大量基因的表达和调控情况, 同时结合蛋白质组学和代谢组学的研究方法, 将基因定位于代谢途径的某个位置, 寻找逆境胁迫响应的关键基因, 完善植物逆境胁迫响应的分子网络, 为今后利用生物技术手段提高作物抗逆境胁迫能力提供依据。文章主要对近年来基因芯片在植物逆境胁迫基因表达研究中的进展进行了综述。  相似文献   

3.
逆境胁迫对水稻DNA甲基化水平的影响   总被引:1,自引:0,他引:1  
植物在逆境胁迫下发生复杂的表现遗传变化,包括DNA甲基化、组蛋白修饰和RNA介导的基因沉默等.其中DNA甲基化是表现遗传学中的重要组成部分,主要通过甲基化、去甲基化来参与逆境胁迫下基因表达的调控,进而增强植物体的抗逆性,调节植物体的生长发育.就非生物与生物胁迫对水稻DNA甲基化水平的影响进行综述,为从表观遗传水平研究水稻抗逆性的机制提供理论参考.  相似文献   

4.
GRAS家族是一类植物特有的转录调控因子,已有报道表明该家族基因在植物生长发育和光信号转导过程中具有重要作用.目前在拟南芥(Arabidopsis thaliana)基因组中已鉴定了33个GRAS家族基因.利用功能基因组学和生物信息学手段,通过基因芯片数据挖掘和基因功能预测,对拟南芥GRAS家族基因在渗透和干旱胁迫过程中的应答模式进行了初步探索,提出了一类响应渗透胁迫和干旱胁迫的拟南芥GRAS家族基因.以SCL13为例,利用基因芯片相关性和GO分析,对其在渗透胁迫信号转导过程中可能的调控机制进行了预测和分析.这一研究将为阐明GRAS家族基因参与水分胁迫的分子机制提供新的思路,同时也为植物抗逆分子育种提供候选基因.  相似文献   

5.
GRAS转录因子在植物响应逆境中起重要作用。为更好的了解核桃(Juglans regia)在逆境胁迫下的适应机制,本研究从‘香玲’核桃转录组中克隆获得一条GRAS基因(命名为JrGRAS2),对其在不同高温胁迫下的表达进行分析,并将该基因插入酵母表达载体pYES2中构建重组载体pYES2-JrGRAS2,将pYES2-JrGRAS2转入酿酒酵母(Saccharomyces cerevisiae)INVSCI,同时以转化pYES2的重组酵母作为阴性对照,在酵母表达系统中研究该基因的抗热胁迫功能。结果显示,该基因开放读码框(ORF)全长1296bp,拟推导的蛋白分子量为47405.83Da,含有氨基酸数为431,理论等电点为5.66。在热胁迫下,JrGRAS2基因被显著诱导,特别是在36℃胁迫0.5h的茎内,其表达相对于对照被上调了335.5倍。对两种酵母进行热胁迫,发现转JrGRAS2基因酵母表现出较对照更高的生存活性。表明JrGRAS2基因具有响应热胁迫的能力,且能提高酵母的抗性,JrGRAS2基因可作为核桃逆境应答的重要候选基因。  相似文献   

6.
病毒诱导的基因沉默及其在植物功能基因组研究中的应用   总被引:1,自引:0,他引:1  
病毒诱导的基因沉默已成为研究植物功能基因组的重要工具. VIGS 体系因其方法简便、周期性短以及避免植物转化等诸多优点, 已在利用正向遗传学和反向遗传学寻找和鉴定基因功能方面发挥了日益重要的作用. 越来越多的植物病毒被改造成为VIGS 载体, 并已在植物发育、生物逆境、非生物逆境、细胞代谢、信号传导等基因功能研究方面得到了应用. 本文围绕VIGS的发展以及在植物功能基因鉴定中的应用及前景提出了展望.  相似文献   

7.
非生物胁迫相关NAC转录因子的结构及功能   总被引:2,自引:0,他引:2  
NAC是植物特有的一类转录因子,参与植物多个生长发育过程,还参与植物对逆境胁迫的响应。本文对非生物胁迫相关NAC转录因子的结构特征、功能预测、表达特性、在转基因植物中的作用及调控路径进行综述。非生物胁迫相关NAC转录因子具有典型的NAc胁迫亚家族结构特征,根据这些结构特征可以预测其功能;非生物胁迫相关NAc转录因子能响应多种非生物胁迫,其转基因过表达大多能使转基因植物提高一种或几种胁迫耐受性;非生物胁迫相关NAc转录因子有着复杂的调控路径。这些NAc转录因子可用于提高转基因植物的逆境耐受性。  相似文献   

8.
逆境胁迫严重影响着全世界范围内的作物产量。为减少逆境胁迫损伤,植物在长期的进化过程中形成了多级别(转录、转录后和翻译、翻译后)的基因表达调控应答机制。最近研究发现,内源microRNA(miRNA)在植物逆境胁迫应答中具有重要的调节作用。在逆境胁迫发生时,一些miRNA会表达上调,而另一些miRNA会表达下调;miRNA正是通过下调胁迫应答过程的负调节子靶基因和上调胁迫应答过程中的正调节子靶基因,来执行生理调控功能。通过综述miRNA在植物逆境应答中的作用,以期全面的了解逆境胁迫调控网络。  相似文献   

9.
赤霉素调节植物对非生物逆境的耐性   总被引:1,自引:0,他引:1  
赤霉素(GAs)是一类重要的植物激素,调控植物生长发育的诸多方面.最近的研究表明,GA也参与对生物与非生物胁迫的响应,然而GA参与非生物胁迫响应的遗传学证据及其机制有待于进一步研究.本实验室前期研究证明,水稻EullfELONGATEDUPPERMOSTINTERNODE)通过一个新的生化途径降解体内的活性赤霉素分子,并参与调控水稻对病原菌的基础抗病性.本研究发现,euil突变体对盐胁迫能力降低,而超表达EUll基因的水稻和拟南芥耐盐性显著提高.进一步研究发现,积累高含量赤霉素的水稻euil突变体对脱落酸(ABA)的敏感性下降,而赤霉素缺失的EUll超表达转基因水稻和拟南芥均改变了对于ABA的敏感性.EUll基因的转录受逆境诱导,其功能缺失与超表达调控了逆境标志基因的表达.综上推测,GA可能是通过影响ABA的信号途径从而改变了植物对非生物胁迫的响应.  相似文献   

10.
DNA甲基化与植物抗逆性研究进展   总被引:5,自引:0,他引:5  
DNA甲基化是真核细胞基因组重要修饰方式之一.DNA甲基化通过与转录因子相互作用或通过改变染色质结构来影响基因的表达,从表观遗传水平对生物遗传信息进行调节,在生长发育过程中起着重要的作用,而且植物DNA甲基化还参与了环境胁迫下的基因表达调控过程.本文对植物DNA甲基化的产生机制、功能,以及DNA甲基化在植物应对逆境胁迫中的作用进行综述,以更好地理解植物DNA甲基化及其对环境胁迫的响应,为植物抗逆性研究及作物遗传改良提供理论参照.  相似文献   

11.
12.
With the advent of molecular biotechnologies, new opportunities are available for plant physiologists to study the relationships between wheat traits and their genetic control. The functional determinations of all genes that participate in drought adaptation or tolerance reactions are expected to provide an integrated understanding of the biochemical and physiological basis of stress responses in wheat. However, despite all the recent technological breakthroughs, the overall contribution of genomics-assisted breeding to the release of drought-resilient wheat cultivars has so far been marginal. This paper critically analyses how biotechnological, genetic and information tools can contribute to accelerating the release of improved, drought-tolerant wheat cultivars. Armed with such information from established models, it will be possible to elucidate the physiological basis of drought tolerance and to select genotypes with an improved yield under water-limited conditions.  相似文献   

13.
14.
Understanding the molecular basis of plant performance under water-limiting conditions will help to breed crop plants with a lower water demand. We investigated the physiological and gene expression response of drought-tolerant (IR57311 and LC-93-4) and drought-sensitive (Nipponbare and Taipei 309) rice (Oryza sativa L.) cultivars to 18 days of drought stress in climate chamber experiments. Drought stressed plants grew significantly slower than the controls. Gene expression profiles were measured in leaf samples with the 20 K NSF oligonucleotide microarray. A linear model was fitted to the data to identify genes that were significantly regulated under drought stress. In all drought stressed cultivars, 245 genes were significantly repressed and 413 genes induced. Genes differing in their expression pattern under drought stress between tolerant and sensitive cultivars were identified by the genotype x environment (G x E) interaction term. More genes were significantly drought regulated in the sensitive than in the tolerant cultivars. Localizing all expressed genes on the rice genome map, we checked which genes with a significant G x E interaction co-localized with published quantitative trait loci regions for drought tolerance. These genes are more likely to be important for drought tolerance in an agricultural environment. To identify the metabolic processes with a significant G x E effect, we adapted the analysis software MapMan for rice. We found a drought stress induced shift toward senescence related degradation processes that was more pronounced in the sensitive than in the tolerant cultivars. In spite of higher growth rates and water use, more photosynthesis related genes were down-regulated in the tolerant than in the sensitive cultivars.  相似文献   

15.
During industrial production process using yeast, cells are exposed to the stress due to the accumulation of ethanol, which affects the cell growth activity and productivity of target products, thus, the ethanol stress-tolerant yeast strains are highly desired. To identify the target gene(s) for constructing ethanol stress tolerant yeast strains, we obtained the gene expression profiles of two strains of Saccharomyces cerevisiae, namely, a laboratory strain and a strain used for brewing Japanese rice wine (sake), in the presence of 5% (v/v) ethanol, using DNA microarray. For the selection of target genes for breeding ethanol stress tolerant strains, clustering of DNA microarray data was performed. For further selection, the ethanol sensitivity of the knockout mutants in each of which the gene selected by DNA microarray analysis is deleted, was also investigated. The integration of the DNA microarray data and the ethanol sensitivity data of knockout strains suggests that the enhancement of expression of genes related to tryptophan biosynthesis might confer the ethanol stress tolerance to yeast cells. Indeed, the strains overexpressing tryptophan biosynthesis genes showed a stress tolerance to 5% ethanol. Moreover, the addition of tryptophan to the culture medium and overexpression of tryptophan permease gene conferred ethanol stress tolerance to yeast cells. These results indicate that overexpression of the genes for trypophan biosynthesis increases the ethanol stress tolerance. Tryptophan supplementation to culture and overexpression of the tryptophan permease gene are also effective for the increase in ethanol stress tolerance. Our methodology for the selection of target genes for constructing ethanol stress tolerant strains, based on the data of DNA microarray analysis and phenotypes of knockout mutants, was validated.  相似文献   

16.
17.
18.
Frank W  Ratnadewi D  Reski R 《Planta》2005,220(3):384-394
In order to determine the degree of tolerance of the moss Physcomitrella patens to different abiotic stress conditions, we examined its tolerance against salt, osmotic and dehydration stress. Compared to other plants like Arabidopsis thaliana, P. patens exhibits a high degree of abiotic stress tolerance, making it a valuable source for the identification of genes effecting the stress adaptation. Plants that had been treated with NaCl tolerated concentrations up to 350 mM. Treatments with sorbitol revealed that plants are able to survive concentrations up to 500 mM. Furthermore, plants that had lost 92% water on a fresh-weight basis were able to recover successfully. For molecular analyses, a P. patens expressed sequence tag (EST) database was searched for cDNA sequences showing homology to stress-associated genes of seed plants and bacteria. 45 novel P. patens genes were identified and subjected to cDNA macroarray analyses to define their expression pattern in response to water deficit. Among the selected cDNAs, we were able to identify a set of genes that is specifically up-regulated upon dehydration. These genes encode proteins exerting their function in maintaining the integrity of the plant cell as well as proteins that are known to be members of signaling networks. The identified genes will serve as molecular markers and potential targets for future functional analyses.  相似文献   

19.
20.
Gene Expression Profiling of Plants under Salt Stress   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号