首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Khan  Dil F.  Peoples  Mark B.  Chalk  Phillip M.  Herridge  David F. 《Plant and Soil》2002,239(2):277-289
Accurate information on below-ground nitrogen (N) of legumes is necessary for quantifying legume effects on soil N pools and on the N economies of crops following legumes in rotation systems. We report a series of glasshouse pot experiments to determine below-ground N (BGN) of the four legumes, fababean (Vicia faba), chickpea (Cicer arietinum), mungbean (Vigna radiata) and pigeonpea (Cajanus cajan) using both 15N shoot-labelling and 15N-labelled soil isotope-dilution methods, a mass N balance approach and the physical recovery of nodulated roots. Data from the 15N shoot-labelling experiment were manipulated in different ways in an attempt to counter errors associated with uneven 15N enrichment of roots and nodules. Values for BGN as percent of total plant N based on the physical recovery of nodulated roots ranged from 4 to 15%. With 15N shoot-labelling, a total of 8.11 mg 15N was supplied to each pot (six plants) as 0.5% 15N urea using either leaf-flap (fababean, mungbean and pigeonpea), petiole (chickpea) or leaf-tip (wheat) feeding. Calculations based on measurement of 15N enrichments of harvested plant parts and root-zone soil suggested that BGN represented 39% of total plant N for fababean, 53% for chickpea, 20% for mungbean and 47% for pigeonpea. The value for wheat was 60%. Adjustment for uneven nodulation patterns on the roots and nodule 15N depletion, resulting in different 15N enrichments between nodulated and unnodulated roots, reduced the fababean value to 37% and chickpea to 42%. Values using the other methods were generally in the same range, viz. 15–57% (simple 15N balance), 11–52% (soil 15N dilution) and 30–52% (mass N balance). We conclude that physical recovery of roots was the most inaccurate method for estimating BGN. Average values for BGN as percent of total plant N using all isotopic and mass N balance methods were 30% for fababean, 48% for chickpea, 28% for mungbean, and 43% for pigeonpea.15N shoot-labelling may be the best method for quantifying BGN of field-grown plants. The methodology is simple, apparently accurate provided care is taken in obtaining representative nodulated root samples and, unlike the soil 15N dilution method, does not require pre-treatment of the soil with 15N enriched material.  相似文献   

2.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

3.

Background and aims

Crop species grown in a diversified crop rotation can influence soil N dynamics to varying degrees due to differences in the quantity and quality of the residues returned to the soil. The aim of this study was to quantify the contribution of N rhizodeposition by canola (Brassica napus L.) and pea (Pisum sativum L.) to the crop residue N balance and soil inorganic N pool.

Methods

Canola and pea were grown in a soil-sand mixture and were subject to cotton-wick 15N labeling in a greenhouse experiment. Nitrogen-15 recovered in the soil and roots were used to estimate N rhizodeposition.

Results

Belowground N, including root N and N rhizodeposits, comprised 70 % and 61 % of total crop residue N for canola and pea, respectively. Canola released the greatest amount of total root-derived N to the soil, which was related to greater root biomass production by canola. However, root-derived N in the soil inorganic N pool was greater under pea (13 %) than canola (4 %).

Conclusions

Our results show a significant belowground N contribution to total crop residue from pea and canola. Further investigation is required to determine whether input of the more labile N rhizodeposits of pea improves soil N supply to succeeding crops or increases the potential for N loss from the soil system relative to canola.  相似文献   

4.
Mineral-associated organic matter (MAOM) is a key component of the global carbon (C) and nitrogen (N) cycles, but the processes controlling its formation from plant litter are not well understood. Recent evidence suggests that more MAOM will form from higher quality litters (e.g., those with lower C/N ratios and lower lignocellulose indices), than lower quality litters. Shoots and roots of the same non-woody plant can provide good examples of high and low quality litters, respectively, yet previous work tends to show a majority of soil organic matter is root-derived. We investigated the effect of litter quality on MAOM formation from shoots versus roots using a litter-soil slurry incubation of isotopically labeled (13C and 15N) shoots or roots of Big Bluestem (Andropogon gerardii) with isolated silt or clay soil fractions. The slurry method minimized the influence of soil structure and maximized contact between plant material and soil. We tracked the contribution of shoot- and root-derived C and N to newly formed MAOM over 60 days. We found that shoots contributed more C and N to MAOM than roots. The formation of shoot-derived MAOM was also more efficient, meaning that less CO2 was respired per unit MAOM formed. We suggest that these results are driven by initial differences in litter chemistry between the shoot and root material, while results of studies showing a majority of soil organic matter is root-derived may be driven by alternate mechanisms, such as proximity of roots to mineral surfaces, greater contribution of roots to aggregate formation, and root exudation. Across all treatments, newly formed MAOM had a low C/N ratio compared to the parent plant material, which supports the idea that microbial processing of litter is a key pathway of MAOM formation.  相似文献   

5.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

6.
The relative distributions of tree and crop roots in agroforestry associations may affect the degree of complementarity which can be achieved in their capture of below ground resources. Trees which root more deeply than crops may intercept leaching nitrogen and thus improve nitrogen use efficiency. This hypothesis was tested by injection of small doses of (15NH4)2SO4 at 21.8 atom% 15N at different soil depths within established hedgerow intercropping systems on an Ultisol in Lampung, Indonesia. In the top 10 cm of soil in intercrops of maize and trees, root length density (Lrv) of maize was greater than that of Gliricidia sepium trees, which had greater Lrv in this topsoil layer than Peltophorum dasyrrachis trees. Peltophorum trees had a greater proportion of their roots in deeper soil layers than Gliricidia or maize. These vertical root distributions were related to the pattern of recovery of 15N placed at different soil depths; more 15N was recovered by maize and Gliricidia from placements at 5 cm depth than from placements at 45 or 65 cm depth. Peltophorum recovered similar amounts of 15N from placements at each of these depths, and hence had a deeper N uptake distribution than Gliricidiaor maize. Differences in tree Lrv across the cropping alley were comparatively small, and there was no significant difference (P<0.05) in the uptake of 15N placed in topsoil at different distances from hedgerows. A greater proportion of the 15N recovered by maize was found in grain following 15N placement at 45 cm or 65 cm depth than following placement at 5 cm depth, reflecting the later arrival of maize roots in these deeper soil layers. Thus trees have an important role in preventing N leaching from subsoil during early crop establishment, although they themselves showed a lag phase in 15N uptake after pruning. Residual 15N enrichment in soil was strongly related to application depth even 406 days after 15N placement, demonstrating the validity of this approach to mapping root activity distributions.  相似文献   

7.
Sustainable management for existing Amazonian forests requires an extensive knowledge about the limits of ecosystem nutrient cycles. Therefore, symbiotic nitrogen (N2) fixation of legumes was investigated in a periodically flooded forest of the central Amazon floodplain (Várzea) over two hydrological cycles (20 months) using the 15N natural abundance method. No seasonal variation in 15N abundance (δ 15N values) in trees which would suggest differences in N2 fixation rates between the terrestrial and the aquatic phase was found. Estimations of the percentage of N derived from atmosphere (%Ndfa) for the nodulated legumes with Neptunia oleracea on the one side and Teramnus volubilis on the other resulted in mean %Ndfa values between 9 and 66%, respectively. More than half of the nodulated legume species had %Ndfa values above 45%. These relatively high N gains are important for the nodulated legumes during the whole hydrological cycle. With a %Ndfa of 4–5% for the entire Várzea forest, N2 fixation is important for the ecosystem and therefore, has to be taken into consideration for new sustainable land-use strategies in this area.  相似文献   

8.
Summary Two consecutive field experiments, using15N and32P, were conducted at the National Corn and Sorghum Research Center, Thailand, to quantify N2 fixed by mungbean, soybean and peanut and to examine effects of the legumes on the yields of succeeding maize and on status of N and P in soils during the following season. An early sorghum, non-nodulating soybean and maize which were used as standard crops in quantifying N2 fixed by mungbean, soybean, and peanut, respectively, gave statistically comparable A-values for soil N though sorghum tended to give lower value than the other crops did. Amounts of fixed N2 were 37.5, 119.0 and 150 kg/ha for mungbean, soybean and peanut, respectively. Plots previously grew legumes yielded higher grain and stover weights and higher N and P uptake of maize than those previously grew maize. There were no significant differences among plots previously grew different legumes. A-values, in most cases, did not differentiate the effects of previous legumes from those of previous maize. However, changes in N and P status of soil, in most cases, were too small to produce A-values changes that were large enough to outrun the experimental errors.  相似文献   

9.
Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant–Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the ‘Cameor’ × ‘Ballet’ population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, 15N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.  相似文献   

10.
Twenty-two tropical food legumes were grown in dilute nutrient solution with or without rhizobium inoculation and supplied with either low or adequate amounts of inorganic N. Growth of legumes supplied with adequate inorganic N was generally satisfactory. However, solution phosphorus (P) concentration (15μM) was excessive for black gram, while the initial solution manganese concentration (1.8μM) was excessive for green gram. Growth responses to inoculation with rhizobium at low inorganic N supply were obtained in only 9 of the 22 legumes studied, and shoot dry matter yields were ≤ 51% of those obtained with adequate N supply. Poor growth by inoculated plants with a low N supply was attributed to failure of the inoculated strain of Bradyrhizobium to infect roots (lima bean and Mexican yam bean), to low nodule numbers (green gram, black gram and navy bean), or to excessive uptake of P (black gram, adzuki bean, pigeonpea, winged bean and cowpea cv. Vita 4) and/or manganese (green gram and black gram). High solution temperatures may have limited N fixation by some of the legumes, particularly chickpea.  相似文献   

11.
Below-ground carbon (C) production and nitrogen (N) flows in the root-zone of barley supplied with high or low amounts of N-fertilizer were investigated. Interest was focused on the effect of the level of N-fertilizer on the production of root-derived C and on gross immobilization (i) and gross mineralization (m) rates. The plants were grown for 46 days in a sandy loam soil. Principles of pool dilution and changes in 15N pool abundances were used in conjunction with mathematical modelling to calculate the flows of N. N was applied at a high or a low rate, as (15NH4)2SO4 solution (17.11 atom% 15N excess), before sowing. Nitrification was inhibited by using nitrapyrin (N-Serve). Pots were sampled four or five times during the experimental period, i.e. 0, 22, 30, 38 and 46 days after germination. On the three last sampling occasions, samples were also collected from pots in a growth chamber with 14C-labelled atmosphere.The release of 14C, measured as the proportion of the total 14C translocated below ground, was higher in the high-N treatment, but the differences between treatments were small. Our results were not conclusive in demonstrating that high-N levels stimulate the decomposition and microbial utilization of root-released materials. However, the internal circulation of soil-N, calculated N fluxes (m), which were in accordance with C mineralization rates and amounts of unlabelled N found in the plants (PU), suggested that the decomposition of native soil organic matter was hampered in the high-N treatment. Apparently, towards the end of the experimental period, microorganisms in the low-N treatment used C from soil organic matter to a greater extent than C they used from root released material, presumably because lower amounts of mineral N were available to microorganisms in the low-N treatment. Immobilization of N appeared to be soil driven (organisms decomposing soil organic matter account for the N demand) at low-N and root-driven (organisms decomposing roots and root-derived C account for the N demand) at high-N.Abbreviations AU Ammonium N-unlabelled - AL Ammonium N-labelled - AT Ammonium N-labelled and unlabelled (total) - NU Nitrate N-unlabelled - OU Organic N-unlabelled - OL Organic N-labelled - OT Organic N-total - PU Plant N-unlabelled (shoots and roots) - PL Plant N-labelled (shoots and roots) - PT Plant N-total (shoots and roots) - SL Sink or source of N-labelled - S Source or sink of N, mainly to and from the outer part of the cylinder - SU Sink or source of N-unlabelled - m Mineralization rate - i Immobilization rate - ua Uptake of ammonium - un Uptake of nitrate - la Loss of ammonium.  相似文献   

12.
Rotylenchulus reniformis is one of the most important nematode pests of pigeonpea. A simple greenhouse technique has been developed to aid evaluation of pigeonpea genotypes for resistance to R. reniformis. In greenhouse pot experiments, eggsacs of R. reniformis in pigeonpea (cv. ICPL 87) roots were counted by eye and with the aid of a stereoscopic microscope at 15, 30 and 45 days after seedling emergence in soils infested with various numbers of vermiform R. reniformis. Seedlings were rated for the number of eggsacs per root system on a one (no eggsacs) to nine (more than 50 eggsacs) scale. Eggsac ratings were more uniform when roots were evaluated at 30 – 45 days than at 15 days and an inoculum of 15 to 30 individuals/cm3 soil also helped reduce variability. Eggsacs were not easily visible without the aid of a stereoscopic microscope. Of the 14 stains tested, exposure of nematode-infected roots to 0.25% trypan blue for three min was effective in staining the eggsacs blue without staining the roots. Using the stain, the assessment of infestation by R. reniformis was equally accurate with or without the aid of a stereoscopic microscope. Exposure of eggsacs to trypan blue enhanced the emergence of juveniles from the eggsacs.  相似文献   

13.
We analyzed the dynamics of the short-term incorporation of recently fixed carbon into the below-ground food web in a boreal forest. Five young spruce trees (Picea abies) were pulse-labeled with 13CO2 and the isotopic label was traced in soil invertebrates during 5 weeks. The freshly fixed plant carbon quickly entered both litter-located and soil-located compartments of the detrital food web. Among invertebrates inhabiting the mineral soil layers, a trophic link to the root-derived C was most pronounced in species with higher δ 15N values, suggesting this energy source to be more important in deeper mineral soil horizons. The label appeared faster in saprophagous animals than in predators (the median time lag after labeling was 6 and 12 days, respectively), but the difference was not significant. The label was recovered in 15 of 38 species of saprophagous animals and in 20 of 63 species of predators. Among saprophages, the frequency and intensity of the label was relatively high in endogeic collembolans and in bibionid larvae, but earthworms and enchytraeids were not labeled. Several groups of predators, lithobiid centipedes in particular, quickly acquired the root-derived carbon, possibly indicating the feeding on live roots or mycorrhizal mycelium. In total, only 35 % of species or genera examined acquired the label. This suggests that majority of invertebrate taxa in the decomposer food web are unlikely to depend heavily on freshly fixed plant carbon provided by roots and root-associated microorganisms.  相似文献   

14.
Compounds released by mungbean roots potentially represent an enormous source of nitrogen (N) and carbon (C) in mungbean-oat intercropping systems. In this study, an in situ experiment was conducted using a 15N - 13C double stem-feeding method to measure N and C derived from the rhizodeposition (NdfR and CdfR) of mungbean and their transfer to oats in an intercropping system. Mungbean plants were sole cropped (S) or intercropped (I) with oat. The plants were labeled 5 weeks after planting and were harvested at the beginning of pod setting (Ip and Sp) and at maturity (Im and Sm). More than 60% and 50% of the applied 15N and 13C, respectively, were recovered in each treatment, with 15N and 13C being quite uniformly distributed in the different plant parts. NdfR represented 9.8% (Sp), 9.2% (Ip), 20.1% (Sm), and 21.2% (Im) of total mungbean plant N, whereas CdfR represented 13.3% (Sp), 42.0% (Ip), 15.4% (Sm), and 22.6% (Im) of total mungbean plant C. When considering the part of rhizodeposition transferred to associated oat, intercropping mungbean released more NdfR and CdfR than mungbean alone. About 53.4–83.2% of below-ground plant N (BGP-N) and 58.4–85.9% of BGP-C originated from NdfR and CdfR, respectively. The N in oats derived from mungbean increased from 7.6% at the pod setting stage to 9.7% at maturity, whereas the C in oats increased from 16.2% to 22.0%, respectively. Only a small percentage of rhizodeposition from mungbean was transferred to oats in the intercropping systems, with a large percentage remaining in the soil. This result indicates that mungbean rhizodeposition might contribute to higher N and C availability in the soil for subsequent crops.  相似文献   

15.
The aim of this controlled environment experiment was to quantify the distribution of leaf-fed-15N and canopy fed-13C within nodulating, non-nodulating or N fertilized non-nodulating Cicer arietinum L. and in their surrounding rhizosphere soil, excluding soil?+?root respiration. Nodulating chickpea partitioned 32% of its total N and 27% of its total recoverable C below-ground, of which only 50% of N and 36% of C were in the clean root fraction. Non-nodulating chickpea allocated equal recoverable C but slightly less N (28%) below-ground but lost less C from plant induced below-ground respiration. The importance of this below-ground partitioning for crop systems C and N balances is highlighted by their large (45% and 33%, for N and C, respectively) contribution to the total plant derived residue (recyclable) fraction. Recovered 15N and 13C were greater (P?<?0.05) in the outer-rhizosphere (459?µg 15N and 3.2 mg 13C core?1) than in the inner-rhizosphere soil (detached from roots during freeze-drying; 18?µg 15N and 67?µg 13C core?1) in relation with the relative size of these compartments. This highlights the significance of the outer-rhizosphere soil when estimating C and N budgets and quantifying rhizodeposition, and the benefit of a double (15N, 13C) isotope approach to determine this flow against large background soil C and N pools.  相似文献   

16.
The specific nodulation, nitrogenase activity (acetylene reduction) and budgets of carbon allocation to respiration by nodulated roots were examined in two provenances of Acacia mangium Willd. grown in a glasshouse for 17 weeks to investigate the effects of soil phosphorus and genotypes of the host plant on symbiotic nitrogen fixation. Application of phosphorus (0–80 mg P kg-1 soil) increased specific nodulation (g nodule dry weight g-1 plant dry weight) of provenance Ma11 by two-fold and the percentage of nodulated root respiration allocated to nitrogenase by 50%, but had no effect on specific activity of nitrogenase or specific respiration coupled with nitrogenase activity. Improved phosphorus nutrition increased the specific nitrogenase activity of provenance Ma9 by 2-fold, the percentage of nodulated root respiration allocated to nitrogenase, and specific nitrogenase-linked respiration by 50%, respectively, but had no effect on the specific nodulation. The percentage of respiration coupled with nitrogenase activity in nodulated root respiration by provenance Ma9 was 60–70% higher than that in provenance Ma11, regardless of phosphorus levels applied. At the optimal level of phosphorus addition (10 mg P kg-1 soil), provenance Ma9 had a lower dry mass than provenance Ma11. This was accompanied by a lower nodulated root respiration and a higher percentage of nodulated root respiration allocated to nitrogenase activity in provenance Ma9.  相似文献   

17.
The growth and mineral nutrition responses were evaluated of three tropical legumes, cowpea (Vigna unguiculata L. cv Kuromame), pigeonpea [Cajanus cajan L. (Millsp.) cv ICPL 86009] and groundnut (Arachis hypogaea cv Nakateyutaka) inoculated with two different species of VAM fungi, Glomus sp. (Glomus etunicatum-like species) and Gigaspora margarita, and grown in Andosols with different fertilities [Bray II-P: topsoil (72 ppm), subsoil (<0.1 ppm)]. Percent fungal root colonization was high in cowpea and groundnut but relatively low in pigeonpea in both soil types. Despite the low rate of root infection, significant growth responses were produced, especially in the inoculated pigeonpea plant. In all legumes, shoot dry matter production was favoured by the inoculations. Increases in shoot biomass due to mycorrhizae were greater in the subsoil than in the topsoil. Mycorrhization raised shoot concentrations of P and Ca (in cowpea and groundnut) and P and K (in pigeonpea) in the topsoil. Whereas the P concentration in shoots in the subsoil was not positively affected by VAM fungi, particularly in cowpea and pigeonpea, the concentration of K in such plants was significantly increased by VAM treatment. The results also showed that mycorrhizal enhancement of shoot micronutrient concentrations was very rare in all plants, with negative effects observed in certain cases. Cu concentration, in particular, was not affected by VAM formation in any of the plants, and Mn and Fe in pigeonpea and groundnut, respectively, remained the same whether plants were mycorrhizal or not. In both soils the three legumes responded to Glomus sp. better than to Gigaspora margarita, and the effects of the VAM fungi on each of the crops relative to the controls were greater in the subsoil than in the topsoil. However, shoot growth of groundnut was not affected as much as cowpea and pigeonpea by the type of soil used. In spite of the relatively low infection of its root, pigeonpea was generally the most responsive of the three legume species in terms of mycorrhizal/nonmycorrhizal ratios.  相似文献   

18.
Two experiments were carried out from 1981 to 1983 in Vertisol field at ICRISAT Center, Patancheru, India to measure N2-fixation of pigeonpea [Cajanus cajan (L.) Millsp.] using the15N isotope dilution technique. One experiment examined the effect of control of a nodule-eating insect on fixation while another in vestigated the effect of intercroping with cereals on fixation and the residual effect of pigeonpea on a succeeding cereal crop. Although both experiments indicated that at least 88% of the N in pigeonpea was fixed from the atmosphere, one result is considered fortuitous in view of the differential rates of growth of the legume and the control, sorghum [Sorghum bicolor (L.) Moench]. The difference method of calculation in dieated negative fixation and the results emphasized the problem of finding a suitable nonfixing control. In a second experiment, when all plants were confined to a known volume of soil to which15N fertilizer was added in the field, these problems were overcome, and isotope dilution and difference methods gave similar results of N2-fixation of about 90%. In intercropped pigeonpea 96% of the total N was derived from the atmosphere. This estimate might be an artifact. There was no evidence of benefit from N fixed by pigeonpea to intercropped sorghum plants. Plant tissue15N enrichments of cereal crops grown after pigeonpea indicated that the cereal derived some N fixed by the previous pigeonpea. Thus residual benefits to cereals are not only an effect of ‘sparing’ of soil N.  相似文献   

19.
Plant and soil nitrogen isotope ratios (δ15N) were studied in experimental grassland plots of varying species richness. We hypothesized that partitioning of different sources of soil nitrogen among four plant functional groups (legumes, grasses, small herbs, tall herbs) should increase with diversity. Four years after sowing, all soils were depleted in 15N in the top 5 cm whereas in non‐legume plots soils were enriched in 15N at 5–25 cm depth. Decreasing foliar δ15N and Δδ15N (= foliar δ15N ? soil δ15N) values in legumes indicated increasing symbiotic N2 fixation with increasing diversity. In grasses, foliar Δδ15N also decreased with increasing diversity suggesting enhanced uptake of N depleted in 15N. Foliar Δδ15N values of small and tall herbs were unaffected by diversity. Foliar Δδ15N values of grasses were also reduced in plots containing legumes, indicating direct use of legume‐derived N depleted in 15N. Increased foliar N concentrations of tall and small herbs in plots containing legumes without reduced foliar δ15N indicated that these species obtained additional mineral soil N that was not consumed by legumes. These functional group and species specific shifts in the uptake of different N sources with increasing diversity indicate complementary resource use in diverse communities.  相似文献   

20.
Nitrogen-15 foliar applications for the production of field-labeled plant tissues may achieve more effective labeling of plant shoot and root tissues and minimize directly labeling the soil N fraction as occurs when15 N is soil applied. Consequently, foliar-labeled plant tissues should be better suited for subsequent 15N mineralization studies. A field experiment was conducted to determine the effectiveness of 15N-labeling and the accumulation of 15N in various plant parts of two tropical legumes. Desmodium ovalifolium Guillemin and Perrottet and Pueraria phaseoloides (Roxb.) Benth., grown in 0.5 m2 microplots, were labeled with foliar-applied urea containing 99 atom% 15N. Plants in each microplot received a total of 0.1698 g 15N that was applied all at once or split equally into two, three or four applications. Legume shoots and roots and soil were destructively harvested and analyzed for total 15N content. Averaged over both legumes and foliar application rates, total plant (shoots, flowers, leaf litter, and roots) recovery was approximately 79% of the 15N applied. The soil contained 3% of the 15N applied, of which 2.5 and 0.5% were in the inorganic and organic fractions, respectively. Nitrogen-15 recovery in shoots (76%) was sixty-five fold greater than in roots (1%) and about nineteen fold greater than the sum of roots and soil (4.1%), a much greater percent recovery than observed in other foliar labeling studies. Averaged over all four foliar split-application rates, 15N recovery by Desmodium shoots was greater than Pueraria. Results demonstrate that 15N foliar application to legumes is an effective method for labeling, resulting in atom% excess 15N levels and 15N recoveries comparable to those reported with the more traditional soil-labeling approach. Another advantage of this method is a nondestructive, in situ labeling method that permits separation of shoot and root residual N contribution to subsequent crops in N tracer studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号