首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 135 毫秒
1.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

2.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

3.
In the mid-1960s, a small number of scientists postulated the role of oxidative stress and oxygen-derived free radicals in the pathophysiological mechanisms underlying ischemic heart disease. However, because of the technical difficulty of measuring free radicals and quantitating oxidative damage, it was very difficult to prove that free radicals could contribute to cell pathology. The role of oxidative stress in biological systems was not definitely recognized until the early 1980s when measurement of short-lived oxygen-derived reactive species was made possible by the advent of sophisticated techniques such as EPR spectroscopy or fluorescent probes. These enabled both the study of free radical biochemistry and the acquisition of useful information about the nature and consequences of free radical-induced protein and lipid oxidation. The hypothesis that reactive oxygen species mediate cellular damage produced upon reperfusion of ischemic myocardium has gained considerable support during the past 10-15 years. Several experimental studies indicated that the administration of antioxidant enzymes or non-enzymatic antioxidants offers a significant degree of protection against ischemic damage, improving functional recovery and reducing morphological alterations to cardiomyocytes. In this context, selenium, as an essential component of glutathione peroxidase, plays a critical role in protecting aerobic tissues from oxygen radical-initiated cell injury.  相似文献   

4.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

5.
Evidence of direct toxic effects of free radicals on the myocardium   总被引:2,自引:1,他引:1  
The hypothesis that oxygen-derived free radicals do indeed play a role in myocardial ischemic and reperfusion injury has received a lot of support. Experimental results have shown that free radical scavengers can protect against certain aspects of myocardial ischemic injury and that on reperfusion the heart approaches a level that is more normal than those hearts not receiving additional scavenging agents. Superoxide dismutase, catalase, glutathione peroxidase, hydroxyl radical scavengers and iron chelators such as desferrioxamine have proven successful in providing an increased level of recovery. These results indicate, as would be expected, that superoxide, hydrogen peroxide and hydroxyl radicals may all, at some point, either contribute to the injury or be important in generating a subsequent radical which causes damage. In addition, solutions capable of generating free radicals have been shown to cause damage to myocardial cells and the vascular endothelium that is similar to the damage observed during myocardial ischemic and reperfusion injury. Alterations in function, structure, flow, and membrane biochemistry have been documented and compared to ischemic injury. The continued investigation of the role of free radicals in ischemic injury is warranted in the hope of further elucidating the mechanisms involved in free radical injury, the sources of their generation, and in defining a treatment that will provide significant protection against this particular aspect of ischemic damage.  相似文献   

6.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

7.
L-Propionyl-carnitine is known to improve the recovery of myocardial function and metabolic parameters reduced in the course of ischemia-reperfusion of the heart. The mechanism of this protective effect of L-propionyl-carnitine is not fully understood. The purpose of this study was to elucidate the effects of L-propionyl-carnitine in Langendorff perfused rat hearts subjected to 40 min of ischemia followed by 20 min of reperfusion. We tested the hypothesis that L-propionyl-carnitine suppresses generation of oxygen radicals and subsequent oxidative modification of myocardial proteins during reperfusion. Our data show that the protective effect of L-propionyl-carnitine in the course of ischemia-reperfusion is highly significant in terms both of mechanical properties of the heart (developed pressure) and of high-energy phosphates (ATP, creatine phosphate). Myocardial creatine phosphokinase (CPK) activity decreased in the course of the reperfusion period. The loss of CPK activity was partially prevented by L-propionyl-carnitine. Two other effects were observed when L-propionyl-carnitine was present in the perfusion solution: (i) the reperfusion-induced sharp increase in oxidative protein modification was completely prevented as detected by the formation of protein carbonyls, and (ii) generation of hydroxyl radicals was significantly inhibited as detected by the formation of the adducts with the spin trap 5,5-dimethyl-1-pyrroline-1-oxide. We conclude that the protective effect of L-propionyl-carnitine against ischemia-reperfusion injury of the heart is at least due in part to its ability to suppress the development of oxidative stress and free radical damage.  相似文献   

8.
Oxygen-derived free radicals and hemolysis during open heart surgery   总被引:2,自引:0,他引:2  
Reperfusion injury occurs during open-heart surgery after prolonged cardioplegic arrest. Cardiopulmonary bypass also is known to cause hemolysis. Since reperfusion of ischemic myocardium is associated with the generation of oxygen free radicals, and since free radicals can attack a protein molecule, it seems reasonable to assume that hemolysis might be the consequence of free radical attack on hemoglobin protein. The results of this study demonstrated that reperfusion following ischemic arrest caused an increase in free hemoglobin and free heme concentrations, simultaneously releasing free iron and generating hydroxyl radicals. In vitro studies using pure hemoglobin indicated that superoxide anion generated by the action of xanthine oxidase on xanthine could release iron from the heme ring and cause deoxygenation of oxyhemoglobin into ferrihemoglobin. This study further demonstrated that before the release of iron from the heme nucleus, oxyhemoglobin underwent deoxygenation to ferrihemoglobin. The released iron can catalyze the Fenton reaction, leading to the formation of cytotoxic hydroxyl radical (OH·). In fact, the formation of OH. in conjunction with hemolysis occurs during cardiac surgery, and when viewed in the light of the in vitro results, it seems likely that oxygen-derived free radicals may cause hemolysis during cardiopulmonary bypass and simultaneously release iron from the heme ring, which can catalyze the formation of OH·.  相似文献   

9.
Glutathione (GSH) is an important intracellular defense against reactive oxygen metabolites. Reaction of GSH with peroxides generates oxidized glutathione (GSSG). We hypothesized that reperfusion would cause oxidation of GSH and release of GSSG as a potential marker of intracellular oxidative reactions. Ten dogs underwent 90 min left anterior descending (LAD) occlusion and 30 min reperfusion. Coronary sinus (CS) plasma was sampled from the great cardiac vein, which drains the LAD region, and from the aorta at pre-ischemia (I), 90 min ischemia, and during reperfusion (R). We found that both GSSG and GSH increased in coronary sinus plasma during early reperfusion. (Formula: see text) Measured GSSG did not arise from autoxidation of plasma GSH. GSH and GSSG release from myocardium not only may be evidence of intracellular oxidative injury, but loss of GSH also could impair metabolism of peroxides during early reperfusion and predispose to further injury.  相似文献   

10.
Effect of low flow ischemia-reperfusion injury on liver function   总被引:2,自引:0,他引:2  
Bailey SM  Reinke LA 《Life sciences》2000,66(11):1033-1044
The release of liver enzymes is typically used to assess tissue damage following ischemia-reperfusion. The present study was designed to determine the impact of ischemia-reperfusion on liver function and compare these findings with enzyme release. Isolated, perfused rat livers were subjected to low flow ischemia followed by reperfusion. Alterations in liver function were determined by comparing rates of oxygen consumption, gluconeogenesis, ureagenesis, and ketogenesis before and after ischemia. Lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) activities in effluent perfusate were used as markers of parenchymal and endothelial cell injury, respectively. Trypan blue staining was used to localize necrosis. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) were measured in the perfusate as indicators of intracellular oxidative stress. LDH activity was increased 2-fold during reperfusion compared to livers kept normoxic for the same time period whereas PNP activity was elevated 5-fold under comparable conditions. Rates of oxygen consumption, gluconeogenesis, and ureagenesis were unchanged after ischemia, but ketogenesis was decreased 40% following 90 min ischemia. During reperfusion, the efflux rates of total glutathione and GSSG were unchanged from pre-ischemic values. Significant midzonal staining of hepatocyte nuclei was observed following ischemia-reperfusion, whereas normoxic livers had only scattered staining of individual cells. Reperfusion of ischemic liver caused release of hepatic enzymes and midzonal cell death, however, several major liver functions were unaffected under these experimental conditions. These data indicate that there were negligible changes in liver function in this model of ischemia and reperfusion despite substantial enzyme release from the liver and midzonal cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号