首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
王海锋  曾波  乔普  李娅  罗芳丽  叶小齐 《生态学报》2008,28(6):2571-2571~2580
人工构建三峡库区消落区植被是控制消落区水土流失、保护消落区生态环境的重要措施,选择能够耐受长时间完全水淹的植物物种是该措施实施的关键.为了验证香根草、菖蒲、空心莲子草能否用于消落区植被的构建,实验模拟消落区的长期完全水淹条件,设置30d、60d、90d、120d、150d和180d等6个完全水淹时间水平,研究了3种植物在完全水淹条件下生长、生物量积累及存活状况.结果发现:(1)3种植物在经受长时间的完全水淹后有较高的存活率,180d全淹处理后,香根草、菖蒲和空心莲子草的存活率分别为87.5%、100%和50%.(2)这3种植物有不同的水下生长能力.全淹条件下,香根草生长缓慢,几乎没有产生新的叶片,总叶长也没有显著变化;菖蒲能够持续产生较对照植株更为细长的叶片,空心莲子草只在水淹初期(30d内)能够快速伸长地上部分的枝条,并迅速产生新叶片,但随水淹时间的延长,总枝条长及总叶片数没有再显著增加.(3)与对照植株相比,全淹处理抑制了3种植物总生物量的增加,但对3种植物的地上、地下部分生物量抑制程度不同.全淹条件下,香根草的地上部分和地下部分生物量与水淹0d水平(水淹处理开始前一天,下同)相比无显著变化,根冠比高于对照植株;菖蒲的地上部分生物量随水淹时间延长而降低,但却高于对照植株,地下部分生物量始终低于水淹0d水平,根冠比低于对照植株;空心莲子草的地上部分生物量与水淹0d水平相比无显著差异,但地下部分生物量与水淹0d水平相比大幅降低,根冠比低于对照植株.结果表明,这3种植物都有很强的水淹耐受能力,可应用于三峡库区消落区植被的构建.同时,发现植物对长期完全水淹的耐受能力很大程度上与植株在水下的生长情况及植株的营养储备水平相关,剧烈的水下生长会消耗大量的营养储备,进而造成植株存活率降低.植株在全淹条件下有限的生长能力及丰富的营养储备可能是耐淹物种的重要特征.  相似文献   

2.
 地瓜藤(Ficus tikoua)、荻(Triarrhena sacchariflora)、牛鞭草(Hemarthria altissima)和狗牙根(Cynodon dactylon)是三峡库区常见的岸生植物, 自然分布于河岸带不同垂直高程的地段。为了明确它们在成库后“三峡库区消落区”长期完全水淹条件下的存活和生长情况, 实验设置对照(不进行水淹, 常规供水管理)和完全水淹两个处理, 30、60、90、120、150和180 d 6个水淹时间水平, 研究了4种植物在完全水淹条件下的存活、生物量变化和恢复生长。结果发现: 1) 4种植物在完全水淹条件下的存活率与其在河岸带上的垂直分布高程密切相关。分布于距江面高程较高的河岸段的地瓜藤植株, 在全淹30 d后就全部死亡; 分布在中高程河岸段的荻在全淹150和180 d后全部死亡; 可以分布于低高程河岸段的牛鞭草和狗牙根, 淹没180 d后存活率分别为90%和100%。2)全淹抑制了荻、牛鞭草和狗牙根的生长, 总生物量增量显著低于对照植株。与水淹0 d相比, 全淹处理植株的地上部分生物量显著降低, 荻在全淹60和120 d后, 地下部分生物量显著降低, 但牛鞭草和狗牙根的地下部分生物量与水淹0 d水平相比无显著差异。3)水淹处理结束后, 存活的荻、牛鞭草和狗牙根植株都能很好地恢复生长。在恢复生长过程中, 全淹30、60和90 d后, 荻、牛鞭草和狗牙根植株的总分枝长相对生长速率与对照植株无显著差异, 全淹120、150和180 d后, 牛鞭草和狗牙根植株的总分枝长相对生长速率显著高于对照植株。全淹处理的荻、牛鞭草和狗牙根植株的总叶片数相对生长速率始终显著高于对照植株。遭受长期完全水淹后, 植株在有限的营养储备条件下, 快速产生叶片以迅速积聚光合产物可能是植物更为优化的恢复生长方式。  相似文献   

3.
三峡库区两种耐水淹植物的存活率和碳水化合物储备关系   总被引:1,自引:0,他引:1  
野古草和秋花柳是三峡库区消落带两种强水淹耐受能力的植物物种。以往研究显示植物的水淹耐受性和体内碳水化合物储备有关。为了探明野古草和秋花柳水淹下的高存活率是否和碳水化合物储备有关, 研究了在室外6个月的模拟水淹条件下两个物种在不同水淹时间(40、90、120和180d)和不同水淹深度下(不水淹、根部水淹和完全淹没)的生物量积累、存活率和碳水化合物含量和分布。结果表明: (1)野古草和秋花柳对长期水淹具有很高的耐受性, 根部水淹植物6个月处理后完全存活; 而完全淹没条件下, 野古草仅在4个月, 秋花柳仅在6个月处理后才开始死亡; (2)碳水化合物主要储备在野古草的茎和秋花柳的茎与主根中, 野古草的根和秋华柳的细根中碳水化合物含量很低; (3)水淹深度和水淹时间对植物生物量积累和碳水化合物含量影响显著(P 0.05):与未水淹植株相比, 根部水淹仅略微降低了生物量积累以及可溶性糖和淀粉含量 (P 0.05), 且保持基本稳定或增加的趋势, 而完全淹没的植株生物量随水淹时间逐渐降低, 碳水化合物含量在前90天快速下降 (P 0.05), 之后缓慢下降或保持不变。研究结果表明, 野古草和秋花柳强的水淹耐受性是和它们高的碳水化合物储备以及水淹条件下对碳水化合物的动用能力有关, 后期的死亡率增加与碳水化合物储备消耗殆尽有关, 野古草和秋花柳对碳水化合物储备对水淹的响应的差异可能和它们的碳水化合物储备在不同组织中的分配模式有关。    相似文献   

4.

Background and Aims

Two main strategies that allow plants to cope with soil waterlogging or deeper submergence are: (1) escaping by means of upward shoot elongation or (2) remaining quiescent underwater. This study investigates these strategies in Lotus tenuis, a forage legume of increasing importance in areas prone to soil waterlogging, shallow submergence or complete submergence.

Methods

Plants of L. tenuis were subjected for 30 d to well-drained (control), waterlogged (water-saturated soil), partially submerged (6 cm water depth) and completely submerged conditions. Plant responses assessed were tissue porosity, shoot number and length, biomass and utilization of water-soluble carbohydrates (WSCs) and starch in the crown.

Key Results

Lotus tenuis adjusted its strategy depending on the depth of submergence. Root growth of partially submerged plants ceased and carbon allocation prioritized shoot lengthening (32 cm vs. 24·5 cm under other treatments), without depleting carbohydrate reserves to sustain the faster growth. These plants also developed more shoot and root porosity. In contrast, completely submerged plants became quiescent, with no associated biomass accumulation, new shoot production or shoot elongation. In addition, tissue porosity was not enhanced. The survival of completely submerged plants is attributed to consumption of WSCs and starch reserves from crowns (concentrations 50–75 % less than in other treatments).

Conclusions

The forage legume L. tenuis has the flexibility either to escape from partial submergence by elongating its shoot more vigorously to avoid becoming totally submerged or to adopt a non-elongating quiescent strategy when completely immersed that is based on utilizing stored reserves. The possession of these alternative survival strategies helps to explain the success of L. tenuis in environments subjected to unpredictable flooding depths.  相似文献   

5.
Repeated defoliation and flooding trigger opposite plant morphologies, prostrated and erect ones, respectively; while both induce the consumption of carbohydrate reserves to sustain plant recovery. This study is aimed at evaluating the effects of the combination of defoliation frequency and flooding on plant regrowth and levels of crown reserves of Lotus tenuis Waldst. & Kit., a forage legume of increasing importance in grazing areas prone to soil flooding. Adult plants of L. tenuis were subjected to 40 days of flooding at a water depth of 4 cm in combination with increasing defoliation frequencies by clipping shoot mass above water level. The following plant responses were assessed: tissue porosity, plant height, biomass of the different organs, and utilization of water-soluble carbohydrates (WSCs) and starch in the crown. Flooding consistently increased plant height independently of the defoliation frequency. This response was associated with a preferential location of shoot biomass above water level and a reduction in root biomass accumulation. As a result, a second defoliation in the middle of the flooding period was more intense among plants that are taller due to flooding. These plants lost ca. 90% of their leaf biomass vs. ca. 50% among non-flooded plants. The continuous de-submergence shoot response of frequently defoliated plants was attained in accordance to a decrease of their crown reserves. Consequently, these plants registered only 27.8% of WSCs and 9.1% of starch concentrations with respect to controls. Under such stressful conditions, plants showed a marked reduction in their regrowth as evidenced by the lowest biomass in all plant compartments: shoot, crowns and roots. Increasing defoliation frequency negatively affects the tolerance of the forage legume L. tenuis to flooding stress. Our results reveal a trade-off between the common increase in plant height to emerge from water and the amount of shoot removed to tolerate defoliation. When both factors are combined and defoliation persists, plant regrowth would be constrained by the reduction of crown reserves.  相似文献   

6.
Plants of Rumex thyrsiflorus Fingerh., R. crispus L. and R.maritimus L., which are zoned along a gradient of elevationin a river foreland ecosystem, and differ in their flood-tolerance,were subjected to different flooding levels. Under conditionsof soil flooding, the growth rates of the flood-tolerant R.crispus and R. maritimus were as high as under drained conditions,but that of the flood-intolerant R. thyrsiflorus was halved.Upon submergence, the low elevation species R. maritimus showedrapid shoot elongation; when elongation resulted in a protrusionof leaves above the water surface, the plants survived. Alternatively,underwater photosynthesis also led to a 100% survival of submergedR. maritimus plants, provided that enough inorganic carbon wasmade available in the water. This could be attributed in partto the use of photosynthetically-derived oxygen for root respiration;in a hydroculture experiment, with 5.0 mM CO2 in the water inthe shoot environment, photosynthetically-derived oxygen contributedmore than 50% to root oxygen consumption at low oxygen concentrationsin the root environment. The intermediately elevated species R. crispus appeared to bemuch more tolerant towards conditions of prolonged total submergence:older plants survived eight weeks submergence in the dark. Thisresponse was explicable in terms of a dormancy-strategy, whichis characterized by a slow consumption of carbohydrates storedin the tap-root. The differential responses of R. maritimusand R. crispus to total submergence reveal the limitations offlood-tolerance and reflect the different life-histories ofthe species. Key words: Photosynthesis, Rumex, submergence, carbohydrates, growth rate, shoot elongation  相似文献   

7.
Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in the drawdown area.  相似文献   

8.
In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.  相似文献   

9.
Recurrent water level fluctuation and submergence of plants are common in riparian zones. Our study objectives were to test the independent and interactive effects of submergence level and fluctuation frequency on a globally important riparian invasive plant, Alternanthera philoxeroides. To this end, we conducted a greenhouse experiment, in which ramets of the plants, obtained from a wetland in China, were treated with four fluctuation frequencies (0, 3, 6, and 12 cycles over a 96-day experimental period) under three water levels (0, 10, and 30 cm). We found that effects of fluctuation frequency were non-significant, negative, and positive under water levels of 0, 10 and 30 cm, respectively. As fluctuation frequency increased, the effects of increasing water level decreased significantly. When water levels were high, A. philoxeroides allocated greater biomass to shoot production probably in order to elongate and escape from submergence. However, as fluctuation frequency increased, biomass investment in roots and leaves also increased, probably in order to maximize nutrient absorption and photosynthesis, respectively. These results suggest that water level fluctuation may alleviate the effects of submergence on A. philoxeroides. In addition, A. philoxeroides showed significant phenotypic plasticity, adjusting its functional traits, such as number of nodes and leaves per stem, as well as stem diameter and pith cavity diameter, according to recurrent water level fluctuation. We conclude that A. philoxeroides may perform better in shallow water zones under conditions of disturbance that include recurrent water level fluctuation. This ability to adapt to disturbance likely promotes its growth and invasion in disturbed habitats.  相似文献   

10.
Knowledge of how germination and seedling establishment respond to soil water condition is crucial for plant conservation under global warming and land-use changes. We tested the flooding and drought tolerance of two plant species with different occurrences along a soil water gradient by assessing seed germination, seedling survival, seedling growth, and root characteristics. In the high Sino-Himalayas, Rheum alexandrae typically occurs in wetlands, R. nobile in scree or open slope with well-drained soils. Seeds and seedlings of the two species were subjected to different soil water conditions in controlled greenhouse experiments. Seed germination in both species was inhibited by high soil water content; however, seeds of R. alexandrae were more tolerant to flooding, especially to submergence. Seedling survival, biomass accumulation, root diameter, and root porosity of R. alexandrae increased significantly with increased soil water content, but submergence was lethal for seedlings. Seedling survival, biomass accumulation, and root length of R. nobile increased significantly in response to reduced soil water content. These results indicate that in the two species, seed germination and seedling establishment in response to different soil water condition are habitat-specific. Because both species are susceptible to moderate changes in soil water condition, their species-specific requirements with respect to this factor should be a consideration when planning their conservation.  相似文献   

11.
植物水淹适应与碳水化合物的相关性   总被引:10,自引:0,他引:10       下载免费PDF全文
水淹会对陆生植物存活造成本质影响, 特别是完全水淹对陆生植物的影响更为明显。水淹对陆生植物最为主要的影响是氧气不足, 这主要是由氧气在水中的扩散速率较低引起的。同时, 在水淹胁迫下植物对光和CO2的获取都会受到限制。所有这些因素都将引起植物生物量减少, 最终导致受淹植物死亡。碳水化合物是植物的能量来源, 与植物在水淹胁迫下存活与否有着密切联系。植物水淹适应性与碳水化合物的相关性主要体现在两大方面: 在生理形态层面, 植物通过伸长生长或抑制伸长生长、地上和地下部分碳水化合物的分配比例不同来应对水淹胁迫; 在另一个层面, 植物通过改变激素、酶和基因的表达, 调整碳水化合物的代谢方式, 从而适应水淹环境。该文结合国内外研究现状, 通过对植物在水淹胁迫下生理形态、激素、酶及基因表达诸方面的变化来认识水淹耐受性与碳水化合物的关系, 并就今后的研究方向提出几点建议。  相似文献   

12.
Resistance to complete submergence was tested in three Rumex species that occur in the Dutch river forelands. The species differ in both habitat and life history characteristics. The annual or biennial R. maritimus and the biennial or short lived perennial R. palustris grow on frequently flooded mud flats of low elevation, while the perennial R. thyrsiflorus can be found on dykes and river dunes that are seldom flooded. The flooding characteristics of the habitats of the three species were determined. These data were used to design experiments to determine the survival and biomass development of the three species during submergence and the influence of plant size and light level on these parameters. It was shown in all three species that plants submerged during daytime were much more resistant to flooding than those submerged at night. This is most probably due to the generation of oxygen or carbohydrates by underwater photosynthesis. Mature plants of the three species showed higher survival after submergence than juvenile plants, which might be caused by higher carbohydrate levels in the taproots of mature plants. In addition, the three species clearly differed in survival and biomass development during submergence. Rumex thyrsiflorus , the species least subjected to flooding, is least tolerant to complete submergence. Rumex maritimus , which can avoid the floods by having a short life cycle, is less tolerant to submergence than R. palustris , which has to survive the floods as a vegetative plant. It was noted that some plants that survived the flooding period itself, still died in the following period of drained conditions, possibly due to post-anoxic injury.  相似文献   

13.
Sakagami J  Joho Y  Ito O 《Annals of botany》2009,103(2):171-180

Background and Aims Oryza glaberrima

is widely grown in flood-prone areas of African river basins and is subject to prolonged periods of annual submergence. The effects of submergence on shoot elongation, shoot biomass, leaf area and CO2 uptake were studied and compared with those of O. sativa.

Methods

A wide selection of lines of O. sativa and O. glaberrima, including some classified as submergence tolerant, were compared in field and pot experiments. Plants were submerged completely for 31 d in a field experiment, and partially or completely for 37 d in a pot experiment in a growth chamber.

Key Results

Leaf elongation and growth in shoot biomass during complete submergence in the field were significantly greater in O. glaberrima than in O. sativa. So-called submergence-tolerant cultivars of O. sativa were unable to survive prolonged complete submergence for 31–37 d. This indicates that the mechanism of suppressed leaf elongation that confers increased survival of short-term submergence is inadequate for surviving long periods underwater. The O. sativa deepwater cultivar ‘Nylon’ and the ‘Yélé1A’ cultivar of O. glaberrima succeeded in emerging above the floodwater. This resulted in greatly increased shoot length, shoot biomass and leaf area, in association with an increased net assimilation rate compared with the lowland-adapted O. sativa ‘Banjoulou’.

Conclusions

The superior tolerance of deepwater O. sativa and O. glaberrima genotypes to prolonged complete submergence appears to be due to their greater photosynthetic capacity developed by leaves newly emerged above the floodwater. Vigorous upward leaf elongation during prolonged submergence is therefore critical for ensuring shoot emergence from water, leaf area extension above the water surface and a subsequent strong increase in shoot biomass.Key words: Flooding, leaf area, net assimilation rate, Oryza glaberrima, O. sativa, photosynthesis, rice, stress adaptation, submergence escape  相似文献   

14.
Two main strategies allow plants to deal with submergence: (i) escape from below water by means of shoot elongation, or (ii) remaining quiescent under the water until water subsides and then resume growth. We investigated these strategies in seedlings of Lotus japonicus, L. corniculatus and L. tenuis subjected to control and submergence for 12 days, with a subsequent 30-day recovery period. All three species survived submergence but used different strategies. Submerged seedlings of L. japonicus exhibited an escape strategy (emerging from water) as a result of preferential carbon allocation towards shoot mass and lengthening, in detriment to root growth. In contrast, seedlings of L. corniculatus and L. tenuis became quiescent, with no biomass accumulation, no new unfolding of leaves and no shoot elongation. Upon de-submergence, seedlings of L. japonicus had the lowest recovery growth (a biomass and shoot height 58% and 40% less than controls, respectively), L. corniculatus was intermediate and L. tenuis showed the greatest recovery growth. Previously submerged seedlings of L. tenuis did not differ from their controls, either in final shoot biomass or shoot height. Thus, for the studied species, quiescence appears to be an adequate strategy for tolerance of short-term (i.e., 12 days) complete submergence, being consistent with field observations of L. tenuis colonisation of flood-prone environments.  相似文献   

15.
In experiments under controlled growth conditions it was examined how flooding affected the responses of the invasive plant Alternanthera philoxeroides to defoliation. In drained and flooded conditions, plants were subjected to five defoliation levels: 0, 10, 50, 90% removal of leaf tissue and apex removal (90% leaf tissue plus apical bud removal). Plants were harvested weekly for five weeks. In drained conditions, plant biomasses including total biomass, shoot biomass and root biomass after 50% defoliation rapidly recovered to the control plant level. They were significantly lower for the 90% defoliation and apex removal treatments compared to control plants throughout the experiment. In flooded conditions, total biomass and shoot biomass after 50% defoliation, 90% defoliation, and apex removal treatments could return to control plant levels before the end of the experiment. In 90% defoliation and apex removal treatments root to shoot biomass ratios of both drained and flooded plants were initially much higher than in control plants, but the difference disappeared rapidly. The final biomasses decreased with increased defoliation intensity in drained conditions, but no significant difference was generally found in any of the defoliation treatments in flooded conditions. The rapid re-growth of A. philoxeroides plants after defoliation may partly be responsible for its invasion success. However, defoliation capable of removing 90% of the leaf tissue may be desirable in restricting the growth of this invasive species in drained conditions.  相似文献   

16.
《Aquatic Botany》2001,69(2-4):147-164
Colonisation by reed seedlings, Phragmites australis (Cav.) Trin. ex Steud. is rare and usually occurs after drawdown and when shallow water prevails. P. australis seeds have high rates of germination but successful colonisation is dependent upon subsequent water depths. We investigated the capacity of young reed plants to resist a 4 weeks submergence stress within a 5 months period, and their subsequent recovery. A pond experiment examined the interactions between submergence depth and the age of the seedlings at submergence. Four submergence treatments were used. In two partial submergence treatments, 50 and 80% of the initial leaf area was submerged. In two total submergence treatments, plants were either submerged at 125% of their initial height with possible subsequent development of emerged leaves, or the water was deepened as they grew to maintain total submergence for 4 weeks. The ages at submergence were 40, 60 and 80 days. Plants were harvested at 5 months. Shoot elongation, biomass allocations to aerial biomass, roots and rhizomes, and photosynthetic activity of aerial leaves were measured. Redox potential was measured for a subsample.Mortality (18.7%) occurred only in the permanent submergence treatment for 40-day-old seedlings. In all treatments, submerged leaves senesced, except the terminal (youngest) leaves of permanently submerged plants. Submergence differentially affected shoot length and biomass, depending upon the intensity of the treatment and the seedling age. The major differences were found between the two partial and two total submergence treatments. Partial submergence (50 and 80%) significantly enhanced biomass accumulation and growth, whereas total submergence largely decreased biomass production and growth in length, with less effect on shoot numbers. The 80-day-old seedlings tolerated submergence better but growth was poorest in medium-aged plants (60-day-old). Increased elongation of the growing internodes of up to 140% was caused by submergence, and photosynthetic activity was enhanced by 85% in emergent leaves of plants initially submerged but allowed to produce emerged leaves during the treatment period.Young P. australis plants require shallow water levels without long lasting submergence to grow and survive. Tolerance to submergence increases with age. These processes contribute to define the conditions for colonisation via seeds in P. australis.  相似文献   

17.

Background and Aims

Plants need different survival strategies in habitats differing in hydrological regimes. This probably has consequences for vegetation development when former floodplain areas that are currently confronted with soil flooding only, will be reconnected to the highly dynamical river bed. Such changes in river management are increasingly important, especially at locations where increased water retention can prevent flooding events in developed areas. It is therefore crucial to determine the responses of plant species from relatively low-dynamic wetlands to complete submergence, and to compare these with those of species from river forelands, in order to find out what the effects of such landscape-scale changes on vegetation would be.

Methods

To compare the species'' tolerance to complete submergence and their acclimation patterns, a greenhouse experiment was designed with a selection of 19 species from two contrasting sites: permanently wet meadows in a former river foreland, and frequently submerged grasslands in a current river foreland. The plants were treated with short (3 weeks) and long (6 weeks) periods of complete submergence, to evaluate if survival, morphological responses, and changes in biomass differed between species of the two habitats.

Key Results

All tested species inhabiting river forelands were classified as tolerant to complete submergence, whereas species from wet meadows showed either relatively intolerant, intermediate or tolerant responses. Species from floodplains showed in all treatments stronger shoot elongation, as well as higher production of biomass of leaves, stems, fine roots and taproots, compared with meadow species.

Conclusions

There is a strong need for the creation of temporary water retention basins during high levels of river discharge. However, based on the data presented, it is concluded that such reconnection of former wetlands (currently serving as meadows) to the main river bed will strongly influence plant species composition and abundance.Key words: Acclimation, biomass allocation, climate, complete submergence, flooding tolerance, retention areas, shoot elongation, soil flooding, waterlogging, wetland species  相似文献   

18.
BACKGROUND: Flooding causes substantial stress for terrestrial plants, particularly if the floodwater completely submerges the shoot. The main problems during submergence are shortage of oxygen due to the slow diffusion rates of gases in water, and depletion of carbohydrates, which is the substrate for respiration. These two factors together lead to loss of biomass and eventually death of the submerged plants. Although conditions under water are unfavourable with respect to light and carbon dioxide supply, photosynthesis may provide both oxygen and carbohydrates, resulting in continuation of aerobic respiration. SCOPE: This review focuses on evidence in the literature that photosynthesis contributes to survival of terrestrial plants during complete submergence. Furthermore, we discuss relevant morphological and physiological responses of the shoot of terrestrial plant species that enable the positive effects of light on underwater plant performance. CONCLUSIONS: Light increases the survival of terrestrial plants under water, indicating that photosynthesis commonly occurs under these submerged conditions. Such underwater photosynthesis increases both internal oxygen concentrations and carbohydrate contents, compared with plants submerged in the dark, and thereby alleviates the adverse effects of flooding. Additionally, several terrestrial species show high plasticity with respect to their leaf development. In a number of species, leaf morphology changes in response to submergence, probably to facilitate underwater gas exchange. Such increased gas exchange may result in higher assimilation rates, and lower carbon dioxide compensation points under water, which is particularly important at the low carbon dioxide concentrations observed in the field. As a result of higher internal carbon dioxide concentrations in submergence-acclimated plants, underwater photorespiration rates are expected to be lower than in non-acclimated plants. Furthermore, the regulatory mechanisms that induce the switch from terrestrial to submergence-acclimated leaves may be controlled by the same pathways as described for heterophyllous aquatic plants.  相似文献   

19.

Background and Aims

Flooding and grazing are major disturbances that simultaneously affect plant performance in many humid grassland ecosystems. The effects of flooding on plant recovery from defoliation were studied in two species: the grass Paspalum dilatatum, regrowing primarily from current assimilation; and the legume, Lotus tenuis, which can use crown reserves during regrowth.

Methods

Plants of both species were subjected to intense defoliation in combination with 15 d of flooding at 6 cm water depth. Plant recovery was evaluated during a subsequent 30-d growth period under well-watered conditions. Plant responses in tissue porosity, height, tiller or shoot number and biomass of the different organs were assessed.

Key Results

Flooding increased porosity in both P. dilatatum and L. tenuis, as expected in flood-tolerant species. In P. dilatatum, defoliation of flooded plants induced a reduction in plant height, thus encouraging the prostrated-growth response typical of defoliated plants rather than the restoration of contact with atmospheric oxygen, and most tillers remained submerged until the end of the flooding period. In contrast, in L. tenuis, plant height was not reduced when defoliated and flooded, a high proportion of shoots being presented emerging above water (72 %). In consequence, flooding plus defoliation did not depress plant recovery from defoliation in the legume species, which showed high sprouting and use of crown biomass during regrowth, whereas in the grass species it negatively affected plant recovery, achieving 32 % lower biomass than plants subjected to flooding or defoliation as single treatments.

Conclusions

The interactive effect of flooding and defoliation determines a reduction in the regrowth of P. dilatatum that was not detected in L. tenuis. In the legume, the use of crown reserves seems to be a key factor in plant recovery from defoliation under flooding conditions.Key words: Allocation, defoliation, flooding, Lotus tenuis, Paspalum dilatatum, submergence  相似文献   

20.
? Plants can respond to their environment by morphological plasticity. Generally, the potential benefits of adaptive plastic responses are beyond doubt under predictable environmental changes. However, the net benefits may be less straightforward when plants encounter temporal stresses, such as flooding in river flood plains. ? Here, we tested whether the balance of costs and benefits associated with flooding-induced shoot elongation depends on the flooding regime, by subjecting Rumex palustris plants with different elongation capacity to submergence of different frequency and duration. ? Our results showed that reaching the surface by shoot elongation is associated with fitness benefits, as under less frequent, but longer, flooding episodes plants emerging above the floodwater had greater biomass production than plants that were kept below the surface. As we predicted, slow-elongating plants had clear advantages over fast-elongating ones if submergence was frequent but of short duration, indicating that elongation also incurs costs. ? Our data suggest that high costs select for weak plasticity under frequent environmental change. In contrast to our predictions, however, fast-elongating plants did not have an overall advantage over slow-elongating plants when floods lasted longer. This indicates that the delicate balance between benefits and costs of flooding-induced elongation depends on the specific characteristics of the flooding regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号