首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Eusocial aphids produce sterile individuals (“soldiers”) that specialize behaviorally and morphologically to protect their colony from predators, while production of soldiers can negatively affect colony growth because of reproductive allocation and opportunity cost. Hence, a cost-saving soldier production strategy is expected to be favored. Here, we hypothesize that, to save the cost, a eusocial aphid Ceratovacuna japonica produces soldiers with smaller weapon in the season when predators are not abundant. The abundance of two specialist lepidopteran predators (i.e., Taraka hamada and Atkinsonia ignipicta) of C. japonica dramatically increased, and aphid colony size significantly decreased, from July to August. In line with these, the soldiers in August had larger weapons (i.e., frontal horns) than those in June, indicating a correlational increase in weapon size with predation pressure. We predict that a reliable prospective signal indicating the coming of midsummer (environmental temperature) induces mother aphids to produce soldiers with larger weapons. Experiments clarified that soldiers produced at 20 °C (typical temperature of July to August) had larger weapons than those produced at 15 °C (typical temperature of May to July). Such phenotypic plasticity appears to be adaptive to maximize the fitness of C. japonica under a temporally variable but predictable predation environment. These results indicate that C. japonica aphids not merely have distinctive reproductive—and soldier castes, but also produce differentially armed soldiers in a habitat with temporally changing predation risks.  相似文献   

2.
A complete understanding of the evolution of sociality in aphids requires a detailed knowledge of the patterns of soldier investment in their ecology. The eusocial bamboo aphidPseudoregma bambucicola has a morphologically specialized first-instar soldier caste. The proportion of soldiers was positively correlated with colony size. Within a colony, soldiers were evenly distributed among subcolonies; within each subcolony, however, their distribution was biased toward peripheries which were exposed to many predators. Field experiments introducing natural enemies such asEupeodes confrater (Diptera: Syrphidae) andSynonycha grandis (Coleoptera: Coccinellidae) revealed that the survival rate of these predators was negatively correlated with the density of soldiers, suggesting that soldiers can more or less defend their colonies by killing or removing a range of natural enemies. Observations suggest that large mature colonies attract more predators than newly established small colonies and that, within a colony, the predators attack each subcolony regardless of its position on bamboo shoots. This implies the presence of a positive correlation between colony size and predation risk. Thus, the investment in soldiers seems to reflect the attacking pattern of predators within a colony. These results agree with the defence-optimization hypothesis in soldier investment ofP. bambucicola colonies.  相似文献   

3.
H. Shibao 《Insectes Sociaux》1999,46(4):378-386
Summary: The reproductive characteristics of the soldier-producing aphid Pseudoregma bambucicola were studied in Kagoshima, Southern Japan, to know the factors affecting soldier production of eusocial aphids. The soldier proportion in aphid colonies was highest from October to November. In some large colonies, soldiers were observed in all seasons except in July when colony size was relatively small. Multiple regression analysis showed that the colony size was a principal factor affecting soldier proportion throughout a year. Other social or environmental factors such as aphid composition, host plant conditions and predator abundance were not always significant. Rearing experiments revealed that large colonies (̿,000 individuals) produced soldiers in almost all seasons while small colonies (<1,000) never produced any soldiers. The caste-production schedule of adult females was examined in the field. When solitary females produced both castes, they usually produced normal nymphs first and then soldiers. Females from large colonies tended to produce more soldiers in the earlier period of their lifetime, whereas females from newly established small colonies produced no or only a few soldiers at later times. The average number of soldiers and normal nymphs produced consecutively by a single female was >10 and >20, respectively. Because they have a small number of ovarioles (<15 on average), females should alter caste production within the same ovarioles according to changes in environmental conditions. Artificial removal or introduction of predators and reduction of colony size did not affect soldier production over two successive generations, revealing maternal effects on soldier production. Females cannot shift caste production quickly in response to changes in predator abundance and colony size. This is probably due to early developmental determination of castes within the mother's body.  相似文献   

4.
Summary Colonies of the aphidPseudoregma alexanderi produce morphologically-specialized first-instar larvae, termed soldiers, that defend the colony from predators. The environmental cues and physiological mechanisms governing soldier production are currently unknown. Here we present a morphometric study of soldiers and normal first-instar larvae ofP. alexanderi. Several morphological features (fore-leg length and width, hind-leg length, and horn length) plotted against body length display relationship that are similar to a sigmoidal curve. We found further support for an earlier finding that soldiers fall into two size categories, majors and minors, although both types of soldiers appear to follow the same allometry. The patterns of allometry in the soldier-producing aphids are very different from those found in other social insects and do not easily fit into the traditional categorization of allometries. We present two simple alternative models of soldier development as a framework for guiding future studies of the mechanisms of soldier production.  相似文献   

5.
Organisms attempt to optimize foraging by maximizing resource acquisition while minimizing predation risk. Aphids (group-living, phloem-feeding insects) routinely change feeding positions and interact with predators and parasites at the single-leaf scale. Here, we assess the life history and predation risk consequences of within-leaf feeding site choices in pea aphids in response to different natural enemies. First, three-chambered clip cages were used to isolate first instar aphids anterior and posterior to a centrally feeding adult on the underside of a single broad bean leaf. Development time to adulthood did not differ between feeding sites, nor did fecundity within the first 24 h of reproduction. Second, we recorded the frequency and latency of natural enemy attacks on aphids adhered to three leaf sites, matching those of the clip cage experiment, on the underside of a single leaf. Aphids feeding nearest the leaf petiole were at greatest risk of predation by a foliar foraging coccinellid predator, Hippodamia convergens, but not by a parasitoid wasp, Aphidius ervi. Thus, feeding nearer the leaf petiole provided no individual life history benefits and exposes the aphid to increased predation risk. We further discuss the notion that feeding at these sites may provide inclusive fitness benefits for colony mates via alarm signaling and subsequent decreased predation success.  相似文献   

6.
The proportion of sterile soldiers in an aphid colony is positively correlated with colony size. Assuming logistic growth of the aphid colony, Aoki and Kurosu (Insect Soc 50:256–261, 2003) presented an inequality that determines, for any colony size, whether a soldier or a reproductive will be added to the colony. To put it in words, if the marginal defensive efficacy of a soldier, multiplied by the number of reproductives, is larger than the mean productivity of reproductives without defense by that soldier, the soldier will be produced; if not, a reproductive will be produced. Based on Aoki and Kurosus inequality, we carried out simulations to determine whether the proportion of soldiers increased with colony size. Given a constant level of depredation per aphid and a constant number of predators, proportion of soldiers continued to increase with colony size unless a single soldier was very effective or unless carrying capacity was very large. Given a constant number of nongluttonous predators and a decreasing level of depredation per aphid, proportion of soldiers soon began to decrease after a peak. However, given an increasing number of nongluttonous predators to keep a constant level of depredation per aphid, proportion of soldiers again continued to increase. These results confirmed the argument that the proportion of soldiers can increase with colony size under a wide range of realistic assumptions.  相似文献   

7.
In social insects, local interactions among colony members facilitate information transfer, and allow the whole colony to regulate division of labor and task allocation in an integrated and coordinated manner. In particular, regulation of caste differentiation in response to external cues is important for sustaining social insect colonies. The social aphid Tuberaphis styraci exhibits a caste polyphenism, producing second‐instar soldiers and non‐soldiers. Previous studies using an artificial diet rearing system identified high aphid density as a crucial cue for soldier production, which acts on embryos in the maternal body and newborn first‐instar nymphs to induce soldier differentiation. While direct contact stimuli from live non‐soldiers were suggested to mediate the density effect, how the aphids perceive the stimuli has been unknown. Here we investigated how antennal removal of adult females affects the soldier production in T. styraci. Under a high density condition, intact females produced the highest percentage of soldiers, females deprived of both antennae produced the lowest percentage of soldiers, and females deprived of one antenna exhibited an intermediate percentage of soldiers. Scanning electron microscopic observations of the aphids revealed the existence of sensory organs for chemoreception and tactile sensation on the antennae of the mother aphids. These results indicate that T. styraci females use their antennae to perceive soldier‐inducing density cue, suggesting that maternal perception of density cue is involved in regulation over caste phenotype of their offspring.  相似文献   

8.
Summary. To clarify the allometric development of body parts accompanying soldier differentiation in termites, we measured 16 body parts of soldiers, presoldiers, pseudergates (workers), nymphs and larvae of the damp-wood termite Hodotermopsis japonica. Principal component analysis (PCA) was performed using these parameters, which revealed that differentiation into soldiers differed distinctly from development into adult (reproductive) individuals. In particular, the anterior body parts enlarged during development of soldiers. Similarly, elongation of the apical portion of both mandibles was noted during soldier differentiation. X-ray analysis of mandibles revealed sclerotization of the soldier mandibles after differentiation into terminal soldiers. These morphological changes during soldier differentiation are associated with changes in their roles within the colony. Through soldier differentiation, the morphology of this caste of termite becomes functionally suited for attacking predators, and unsuitable for feeding on wood using their mandibles. Based on these data, we suggest that there must be some morphogenetic factors leading caste specific morphology such as soldier mandibles.  相似文献   

9.
The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus Rambur and Orius laevigatus (Fieber) and their control of two pests in a sweet pepper crop. Both predators consume pollen and nectar in sweet pepper flowers, prey on thrips and aphids, and O. laevigatus is an intraguild predator of M. pygmaeus. Observations in a commercial sweet pepper crop in a greenhouse with low densities of pests showed that the two predator species coexisted for 8 months. Moreover, their distributions in flowers suggested that they were neither attracted to each other, nor avoided or excluded each other. A greenhouse experiment showed that the predators together clearly controlled thrips and aphids better than each of them separately. Thrips control was significantly better in the presence of O. laevigatus and aphid control was significantly better in the presence of M. pygmaeus. Hence, combined inoculative releases of M. pygmaeus and O. laevigatus seem to be a good solution for controlling both thrips and aphids in greenhouse-grown sweet pepper. The predators are able to persist in one crop for a sufficiently long period and they complement each other in the control of both pests. This study also provides further evidence that intraguild predation does not necessarily have negative effects on biological control.  相似文献   

10.
The social insect soldier is perhaps the most widely known caste, because it often exhibits spectacular weapons, such as highly enlarged jaws or reinforced appendages, which are used to defend the colony against enemies ranging in size from wasps to anteaters. We examined the function of the enlarged forelimbs of soldiers (both male and female) of the eusocial, gall-inhabiting insect Kladothrips intermedius, and discovered that they have little impact on their ability to repel the specialized invading thrips Koptothrips species. While the efficacy of the enlarged forelimb appears equivocal, we show that soldiers secrete strong antifungal compounds capable of controlling the specialized insect fungal pathogen, Cordyceps bassiana. Our data suggest that these thrips soldiers have evolved in response to selection by both macro- and micro-organisms. While it is unknown whether specialized fungal pathogens have been major selective agents in the evolution of the soldier caste in general, they were probably present when sociality first evolved and may have been the primordial enemies of social insects.  相似文献   

11.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

12.
Nest repair is a vital element in the cooperative brood care that is a distinctive feature of eusocial animals. We investigated the repair role of individuals of the social aphid Pemphigus spyrothecae by prematurely opening their gall by cutting a hole of the same size and position as a natural opening. This resulted in increased mortality from predation. No subsequent responsive shift towards increased investment in soldiers was detected. However, repair of the holes by compensatory regrowth from undamaged adjoining areas of the gall was observed in 97.5% of the experimental galls that were protected from predation. Subsequent experiments confirmed that the aphids were responsible for this repair, with soldiers likely to be the major agents. Active maintenance of the integrity of the gall represents another altruistic task for which soldiers are predominantly responsible and indicates that social complexity in the order Hemiptera is greater than previously assumed.  相似文献   

13.
The potential of predators to impact the establishment of aphid vectors and the spread of beet yellows virus in sugar beet was examined. Myzus persicae carrying beet yellows virus (BYV) were released on six interior sites and six edge sites in each of four fields at the end of May. Aphids established at low densities and BYV was spread in circular patches around the infested plants at all sites. The number of diseased plants per patch at the end of September ranged from a field-average of 130 to 210 in the four fields. There was a weak tendency towards better aphid establishment and greater virus spread in fields in less complex landscapes. Edge sites had less virus spread than interior sites in one field, more virus spread in two other fields, and there was no statistically significant difference in the fourth field. In the field where virus spread was lowest at edge sites, we used predator exclosure and direct observation to manipulate and quantify the effects of early season predation. On a warm day in early June, 81% ofAphis fabae exposed to predators on young beet plants disappeared during a 24 h period, compared to 10% of aphids protected by clipcages. Intermediate levels of predator exclusion, allowing aphids to walk away but restricting predator access, showed that predation was responsible for aphid disappearance.Cantharis lateralis L. (Coleoptera: Cantharidae) was the most frequently observed foliar predator (>90%). It was found eating aphids on several occasions. The incidence of predators was 1.8 per plant per h in the field interior and 3.8 per plant per h. near the edge. In the same field, aphids and virus were released in six edge and six interior sites, that were surrounded by 0.5 m high plastic open-top barriers (‘exclosures’). Pitfall trapping inside the barriers reduced potential soil predator densities to ca. one-tenth of the open field level and arrivals of flying predators were reduced. Inside the exclosures, aphid establishment was enhanced, and virus spread at exclosure sites was increased by about 50% compared to open sites. Foliar and pitfall sampling yielded the following predators:Cantharis lateralis, C. rufa L. (Coleoptera: Cantharidae),Coccinella septempunctata L.,C. undecimpunctata L. (Coleoptera: Coccinellidae),Pterostichus cupreus (L.),Harpalus rufipes (de Geer),Patrobus atrorufus (Strom),Trechus quadristriatus (Schrk.),Bembidion lampros (Herbst) (Coleoptera: Carabidae). In a laboratory no-choice trial (with 10M. persicae /day offered), each of these species ate aphids with consumption rates varying from 1.7 to 9.2 aphids/day. The results show that early predation substantially impacted aphid establishment in one field, and resulted in reduced virus spread. Results in the other fields show that these results cannot be easily generalized.  相似文献   

14.
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species.  相似文献   

15.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

16.
The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator’s, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation.  相似文献   

17.
Predators can reduce bee pollination and plant fitness through successful predation and non-consumptive effects. In honey bees, evidence of predation or a direct attack can decrease recruitment dancing and thereby magnify the effects of individual predation attempts at a colony level. However, actual predation attempts and successes are relatively rare. It was not known if a far more common event, just detection of a predator, could inhibit recruitment. We began by testing honey bees'' avoidance of the praying mantis (Tenodera sinensis). Larger predators (later mantis instars, ≥4.5 cm in body length) elicited significantly more avoidance (1.3 fold) than smaller mantis instars. Larger instars also attempted to capture honey bees significantly more often than did smaller instars. Foragers could detect and avoid mantises based upon mantis odor (74% of bees avoided an odor extract) or visual appearance (67% avoided a mantis model). Finally, foragers decreased recruitment dancing by 1.8 fold for a food source with a live adult mantis, even when they were not attacked. This reduction in recruitment dancing, elicited by predator presence alone, expands our understanding of predator non-consumptive effects and of cascading ecosystem effects for plants served by an important generalist pollinator.  相似文献   

18.
Aphids exhibit a polymorphism whereby individual aphids are either winged or unwinged. The winged dispersal morph is mainly responsible for the colonization of new plants and, in many species, is produced in response to adverse environmental conditions. Aphids are attacked by a wide range of specialized predators and predation has been shown to strongly influence the growth and persistence of aphid colonies. In two experiments, we reared two clones of pea aphid (Acyrthosiphon pisum) in the presence and absence of predatory ladybirds (Coccinella septempunctata or Adalia bipunctata). In both experiments, the presence of a predator enhanced the proportion of winged morphs among the offspring produced by the aphids. The aphid clones differed in their reaction to the presence of a ladybird, suggesting the presence of genetic variation for this trait. A treatment that simulated disturbance caused by predators did not enhance winged offspring production. The experiments indicate that aphids respond to the presence of a predator by producing the dispersal morph which can escape by flight to colonize other plants. In contrast to previous examples of predator-induced defence this shift in prey morphology does not lead to better protection against predator attack, but enables aphids to leave plants when mortality risks are high.  相似文献   

19.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   

20.
Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号