首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
We examined the phylogeny of ticks (Acari:Parasitiformes:Ixodida) and their closest known mite relatives (Acari:Parasitiformes:Mesostigmata and Holothyrida) using 18S rRNA sequences. In our analyses, we included sequences from 36 taxa. Sequences for 13 hard ticks (Family Ixodidae), 5 soft ticks (Family Argasidae), and 2 mesostigmatid mites were obtained from the GenBank database and we generated sequences for 15 hard ticks and 1 holothyrid mite. Ten of these tick species were endemic to Australia. Our analyses indicated that the suborder Holothyrida is more closely related to Ixodida than to Mesostigmata, the group used as outgroup in earlier molecular studies. This finding is consistent with Lehtinen's (1991) hypothesis that the Holothyrida rather than the Mesostigmata is the sister-group to the Ixodida. Within the hard ticks the genus Aponomma and thus the family Amblyomminae were paraphyletic. Taxonomic revision of these taxa is needed. The genus Amblyomma was paraphyletic without the inclusion of "typical" Aponomma species (Ap. latum and Ap. fimbriatum). There was a basal divergence between endemic Australian and other species in both the Metastriata and the Prostriata divisions of the hard ticks.  相似文献   

2.
Fauna of parasitic and free-living arthropods associated the water vole Arvicola terestris and its nests in various landscape zones and subzones of the south of Western Siberia has been studied. Total abundance of gamasid mites and ticks (Gamasoidea, Ixodidae), fleas and nidicolous arthropods in nests is high, and the set of nidicolous and parasite species is quite diverse, but everywhere the parasite fauna is characterized by a small amount of species reaching a high abundance: Laelaps muris on the voles, Haemogamasus ambulans in nests, Ixodes apronophorus and Megpbotris walkeri both on the voles and nests. Parasitic arthropods living on the voles or in their nests are characterized by higher and stables indices of infection, while these parameters for free-living arthropods were variable. The list of mesostigmatic mites parasitizing the water vole and its nests in the south of Western Siberia (Adamovich, Krylov, 2001) has been considerably supplemented. In total, the fauna of parsitiform mites (Acari: Mesostigmata and Ixodiddes) and fleas (Siphonaptera) associated with the water vole in the south of Western Siberia is represented by 97 arthropod species of 19 families, including 74 species of mesostigmatic mites (Gamasoidea), 6 species of ticks (Ixodidae) and 17 species of fleas.  相似文献   

3.
Host race formation generates diversity within species and may even lead to speciation. This phenomenon could be particularly prevalent in the Acari due to the often intimate interaction these species have with their hosts. In this review, we explore the process of host race formation, whether it is likely to occur in this group and what features may favour its evolution. Although few studies are currently available and tend to be biased toward two model species, results suggest that host races are indeed common in this group, and more likely to occur when hosts are long-lived. We discuss future directions for research on host-associated adaptations in this group of organisms and the potential relevance of host race formation for the biodiversity of mites and ticks.  相似文献   

4.
Mites and ticks are susceptible to pathogenic fungi, and there are opportunities to exploit these micro-organisms for biological control. We have collated records of 58 species of fungi infecting at least 73 species of Acari, either naturally or in experiments. Fungal pathogens have been reported to kill representatives of all three orders of the Actinotrichida (the Astigmata, Oribatida and Prostigmata) and the Ixodida and Mesostigmata in the Anactinotrichida. Most reports concern infections in the Prostigmata, particularly in the families Tetranychidae and Eriophyidae. Two species of Acari-specific pathogens - Hirsutella thompsonii and Neozygites floridana - are important natural regulators of pestiferous eriophyoid and tetranychid mites respectively. Research has been done to understand the factors leading to epizootics of these fungi and to conserve and enhance natural pest control. Hirsutella thompsonii was also developed as the commercial product Mycar for the control of eriophyoid mites on citrus, but was withdrawn from sale in the 1980s, despite some promising effects in the field. Beauveria bassiana , Metarhizium anisopliae, Paecilomyces farinosus, Paecilomyces fumosoroseus and Verticillium lecanii infect ixodid ticks in nature, and B. bassiana and M. anisopliae are being studied as biological control agents of cattle ticks in Africa and South America. Beauveria bassiana also has potential as a mycopesticide of the two-spotted spider mite, Tetranychus urticae . There is scope to develop fungal biocontrol agents against a range of acarine pests, both as stand-alone treatments and for use in integrated pest management. Further research is required to clarify the taxonomic status of fungal pathogens of Acari, to study their ecosystem function, and to develop efficient mass production systems for species of Hirsutella and Neozygites .  相似文献   

5.
Summary: Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood‐sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system. genesis 51:803–818. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Acari (mites and ticks) form one the most diverse lineages of arthropods, but basal relationships in the group are still poorly understood. The current study addresses this issue for one of its two main lineages, the order Parasitiformes. Relationships are examined at the subordinal and infraordinal level using complete 18S and partial 28S nuclear rRNA sequence data. Most currently recognized lineages are recovered with good support, suggesting that nuclear rRNA, and specifically 18S rRNA, is very well suited for analyzing relationships at this level in this lineage. These results were found despite quite variable rates of sequence evolution, with rates "ratcheting up" from relatively low in most non-mite arachnid lineages, to intermediate in Pseudoscorpiones, the mite order Acariformes, and the parasitiform suborders Opilioacarida, Holothyrida, and Ixodida, to high in the parasitiform suborder Mesostigmata. The most species rich mesostigmatid infraorder, Dermanyssina, shows huge distances to the outgroups, but remarkably low within-group divergence in nuclear rRNA. This suggests the possibility of a relatively recent origin of this lineage.  相似文献   

7.
8.
We collected 22,769 adult female mosquitoes, representing 27 species, from light traps in Norfolk, Virginia (2006–2007) and examined them to assess infestation by larval mites. Mosquitoes were parasitized by two species of aquatic (Acari: Arrenuridae: Arrenurus) and three species of terrestrial mites (Acari: Erythraeidae). The prevalence of infestation varied from 0.55% (2006) to 0.17% (2007). The mean intensity of parasitism ranged from 3.6 mites per host (2006) to 1.8 mites per host (2007). The most common host species for aquatic mites was Culex erraticus, while the most common host for terrestrial mites was Anopheles quadrimaculatus. Relationships between biotic and abiotic factors were investigated in an attempt to provide insight into temporal, spatial, and interspecific variation in mite–mosquito interactions. Scanning electron microscopy was used to examine the mode of attachment for larval mites. While the prevalence of aquatic mite parasitism was correlated for Culex erraticus, the invasive mosquito, Aedes albopictus, was never parasitized through the duration of the study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Tick genomics: the Ixodes genome project and beyond   总被引:1,自引:0,他引:1  
Ticks and mites (subphylum Chelicerata; subclass Acari) include important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a blood-feeding tick vector of human disease and a member of the subphylum Chelicerata. Genome projects for other species of Acari are forthcoming and their genome sequences will likely feature significantly in the future of tick research. Parasitologists interested in advancing the field of tick genomics research will be faced with specific challenges. The development of genetic tools and resources, and the size and repetitive nature of tick genomes are important considerations. Innovative approaches may be required to sequence, assemble, annotate and analyse tick genomes. Overcoming these challenges will enable scientists to investigate the genes and genome organisation of this important group of arthropods and may ultimately lead to new solutions for control of ticks and tick-borne diseases.  相似文献   

10.
Causes of spider mite (Acari: Tetranychidae) population resurgences consequent upon exposure to synthetic pyrethroid (SP) treatments are reviewed. Resurgences may be seen as soon as 1 week, or even as late as a whole season, post-treatment. Synthetic pyrethroids vary in their adverse effects on spider mites, and also differ in their ability to invoke resurgences of different spidermite species on diverse plants. These pesticides are lethal as well as repellent to phytoseiids and other predators that prey on spider mites, may inhibit fungi which attack the latter, and affect phytophagous competitors. Spider mites are likewise repelled by SPs, thus becoming more evenlydistributed and less web-restricted, with a resultant increase in fecundity. Spider-mite development is shortened due to SPs and the sex ratio becomes more female-biased; onset of winter diapause also seems to be delayed. Synthetic pyrethroids appear to sensitize to spider-mite infestation plants which have not hitherto been attacked. Some SP effects (whether on spider mites, natural enemies or competitors) appear to be direct, whereas others may be mediated through the host plants. The effect of SPs on the other Acari is variable within the Prostigmata and Astigmata. Most Mesostigmata and Metastigmata (ticks) are very sensitive, whilst the Cryptostigmata (Oribatei) appear to be insensitive. Synthetic pyrethroids-induced resurgences of Homoptera are comparatively reviewed, with the conclusion that some of the phenomena may be similar to those observed in spider mites. Various resurgence models are discussed, as well as the three main causes of variation (SPs, spider-mite species, host plants) in the observed phenomena. The need for more rigorous and carefully controlled experimentation is emphasized.  相似文献   

11.
Comparative analysis of the composition, population structure, and landscape distribution of small mammals and associated parasitic arthropods was performed for the plain part of West Siberia. Four main zonal complexes were distinguished, corresponding to different landscape zones or subzones: tundra, forest, forest-steppe (the northern forest-steppe subzone), and steppe (the southern forest-steppe subzone and steppes). The parasite specificity of each complex is defined by different systematic and ecological groups of arthropods: the tundra complex is defined by epizoic gamasid mites (Acari: Parasitiformes: Mesostigmata), the forest and forest-steppe complexes are defined by ticks (Acari: Parasitiformes: Ixodides) and fleas (Insecta: Siphonaptera), and the steppe complex is defined by fleas and nidicolous gamasid mites.  相似文献   

12.
Mites and ticks can be divided into two well-defined clades, Anactinotrichida and Actinotrichida, for which a recent work formalized a suite of putative autapomorphies and reciprocal differences. Whether they are sister-taxa – forming a monophyletic Acari – is more controversial. Earlier supporters of two independent origins for mites largely failed to demonstrate convincing synapomorphies between either of the two lineages and other arachnid orders; although recent work on reproductive biology revealed explicit characters of this nature. Furthermore, some of the characters proposed in support of a monophyletic Acari do not stand up to detailed scrutiny when compared with Arachnida in general. Effective morphological comparisons between mites and other arachnids are hindered by incompatible nomenclature and long-standing, mite-specific characters which are difficult to score for other arachnids. Furthermore, taxon-specific characters restricted to individual mite groups have sometimes been treated erroneously as 'typical' for all Acari. Here, previous hypotheses of mite affinities are reviewed. Historically, authors have debated whether mites are basal arachnids or highly derived. Excluding weakly supported early hypotheses, mites have been resolved – in whole or in part – as sister-group of all other Arachnida (based on tagmosis), closely related to Opiliones (based mostly on genital morphology), Palpigradi (based on controversial interpretations of limb morphology), Solifugae (based mostly on the mouthparts, but now perhaps also reproductive characters) and Ricinulei (based on hexapodal larvae and perhaps mouthparts). We cannot provide a final resolution here, but we aim to highlight important character sets which should be included in subsequent phylogenetic analyses, as well as useful areas for future investigations: particularly tagmosis and the nature of the gnathosoma.  相似文献   

13.
中国蜱螨学研究进展概况   总被引:2,自引:0,他引:2  
姜在阶 《昆虫知识》1992,29(3):159-162
<正> 我国蜱螨学的研究起步较晚,解放前只有一些零星报道,比较系统的研究是从50年代开始。1963年在长春召开了第一届全国蜱螨学术讨论会,至今已有30年。近十几年来,蜱螨学的研究进展较快,中国经济昆虫志中有关蜱  相似文献   

14.
The Acari is the most numerous and diverse group of the subphylum Chelicerata. With approximately 55 000 described species (and estimates of up to 1 million extant species), their adaptations for parasitism, phytophagy, mycophagy, saprophagy and predation rival other arthropods and challenge us with a wide variety of biological interactions. While a few studies have unravelled the nature of some endosymbiotic associations between mites or ticks and prokaryotes, almost nothing has been done yet regarding acarine eukaryotic ectosymbionts. Microbial ectosymbionts can benefit their hosts by providing nutrients, by aiding digestion, by enhancing communication, by assisting in mating and/or fertilization, by protecting their host against pathogenic microorganisms, against predation and so on. In this sketch, we introduce a number of described cases of fungal and protist ectosymbionts and discuss the role they might play in the life of their acarine hosts.  相似文献   

15.
沈莲  孙劲旅  陈军 《昆虫知识》2010,47(6):1264-1269
近年来,随着人们生活水平日益提高,变态反应性疾病的发病率在全世界范围内呈不断上升趋势,受到人们的日益重视,其中家庭螨类是最主要的过敏原之一。本文对蜱螨、家庭螨类的组成及可导致人体过敏性疾病的种类作了简要介绍,并编制了家庭螨类常见目、亚目和科及麦食螨科Pyroglyphidae物种成螨检索表。此外,本文结合变态反应性疾病的相关医学知识及对未来主要研究方向的展望,为螨过敏性疾病的流行病学调查及防治提供了一定的参考价值。  相似文献   

16.
It is well established in the literature that circulating high levels of juvenile hormone (JH) are responsible for the initiation of vitellogenesis and female reproduction in most insects studied so far. Exceptions include some Diptera, Lepidoptera and Hymenoptera. The current view is that JH also regulates yolk protein (vitellogenin, Vg) synthesis and female reproduction in mites. However, there is no published evidence that mites have the common insect JHs at any stage of their development. Also, research on the effects of exogenous applications of JH and JH analogs on the reproduction of mites is contradictory. Significant information is available on the life history of mite reproduction, and new information has become available on mite storage proteins including Vg. Although initial studies suggested that ticks may respond to exogenously applied juvenile hormone or anti-JHs, current research shows that ticks cannot synthesize the common insect JHs and have no detectable levels of these hormones in their hemolymph during female reproduction. In ticks, it appears that ecdysteroids, and not JH, regulate expression of the Vg gene and the synthesis and release of Vg protein into the hemolymph. In fact within the Arthropoda, JH has been found only in insects. Methyl farnesoate and not JH regulates Vg synthesis in the Crustacea, the sister group to the insects. Based on this evidence, a new working hypothesis is proposed, i.e., that ecdysteroids and not the JHs regulate vitellogenesis in the Acari including both ticks and mites. To the present, the role of neuropeptides in the regulation of female reproduction in mites is not known.  相似文献   

17.
Besides their potential for species identification, DNA-based methods are also routinely used for addressing ecological, evolutionary, phylogenetic and genetic questions to study several groups of Acari. However, in contrast to other plant-feeding mites and despite the economical relevance of many species of Eriophyoidea, very few scientists have dared so far to use DNA methods for the study of this group of mites; their very small size certainly has influenced this. In this review we examine the main techniques that have been used to study eriophyoid mites and discuss the results from the literature where DNA methods have provided significant advances to address several essential questions of the eriophyoid biology, e.g., to clarify suspect synonymies, to test hypothesis of cryptic species, to examine the occurrence of biotypes, especially in relation to virus ability or host-plant associations, to understand colonization patterns of invasive species, and for uses as biological control agents against invasive plants. We discuss these questions which might be related to agricultural issues, together with more fundamental aspects as the revision of the phylogeny of the Eriophyoidea. We discuss on the advantages as well as limitations of the most commonly used genetic markers and emphasize prospects and challenges of new molecular approaches. Much is now expected from molecular techniques in many fields of biology and for virtually all taxa. Eriophyoids should not be the exception.  相似文献   

18.
Many plant species possess structures on their leaves that often harbour predatory or fungivorous mites. These so‐called domatia are thought to mediate a mutualistic interaction; the plant gains protection because mites decimate plant pathogenic fungi or herbivores, whereas the mites find shelter in the domatia. We tested this hypothesis using two species of coffee (Coffea spp.) plants that posses domatia consisting of small cavities at the underside of the leaves, and which often harbour mites. We assessed densities of domatia, of the predatory mite Iphiseiodes zuluagai Denmark and Muma (Acari: Phytoseiidae) and of herbivorous mites Oligonychus ilicis (McGregor) (Acari: Tetranychidae) and Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) on Coffea arabica L. (Rubiaceae) and Coffea canephora Pierre in the field. Over a period of 50 days, C. arabica harboured on average 7.5 times more predatory mites and 0.4–0.66 fewer prey mites than C. canephora. Hence, the higher density of predatory mites on C. arabica could not be explained by higher densities of prey. However, the density of domatia on C. arabica was on average 1.65 times higher than on C. canephora, and within each species, leaves with higher densities of domatia also harboured more predators. This suggests a positive effect of domatia on predatory mites. In the laboratory, survival of adult female predatory mites on leaves of C. arabica with open domatia was indeed significantly higher than on leaves with closed domatia. Hence, predatory mites benefited from the domatia. However, plants with higher densities of domatia did not harbour fewer herbivores. Taken together, our study only provides partial evidence for a mutualistic interaction between coffee plants and predatory mites, mediated by domatia.  相似文献   

19.
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a major pest of strawberry. The efficacy of three species of predatory mites, Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) (both: Acari: Phytoseiidae), and Hypoaspis miles (Berlese) (Acari: Laelapidae), and their compatibility with spinosad for the control of this thrips was evaluated in commercial strawberry in spring. Low tunnel‐grown strawberry was treated with ‘water then mites’, ‘spinosad then mites’, or ‘mites then spinosad’. Predatory mites were released as single‐, two‐ and three‐species combinations. Overall, spinosad‐treated plants had fewer thrips than water‐treated plants (control). In all treatment regimes, each species of predatory mite reduced the number of thrips relative to those plants that received no mites. Predatory mites were most effective in reducing thrips when released after spinosad was applied. Any multiple‐species combination of predatory mites reduced thrips numbers more than single‐species releases. The two‐species combination of T. montdorensis (foliage inhabiting) and H. miles (soil dwelling) was the most effective in suppressing thrips. The next most effective combination was a three‐species release. Of multiple‐species combinations, the two‐species combination of T. montdorensis and N. cucumeris was the least effective in suppressing thrips numbers. The spinosad and mites only temporarily reduced the numbers of F. occidentalis. This suggests that further application of predatory mites, spinosad, or both is required to maintain F. occidentalis populations below an economically damaging level.  相似文献   

20.
Prey that lives with functionally different predators may experience enhanced mortality risk, because of conflicts between the specific defenses against their predators. Because natural communities usually contain combinations of prey and functionally different predators, examining risk enhancement with multiple predators may help to understand prey population dynamics. It is also important in an applied context: risk enhancement with multiple biological control agents could lead to successful suppression of pests. We examined whether risk enhancement occurs in the spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when exposed to two predator species: a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), and a specialist predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). We replicated microcosms that consisted of spider mites, ants, and predatory mites. Spider mites avoided generalist ants by staying inside their webs on leaf surfaces. In contrast, spider mites avoided specialist predatory mites that intruded into their webs by exiting the web, which obviously conflicts with the defense against ants. In the presence of both predators, enhanced mortality of spider mites was observed. A conflict occurred between the spider mites’ defenses: they seemed to move out of their webs and be preyed upon by ants. This is the first study to suggest that risk enhancement occurs in web‐spinning spider mites that are exposed to both generalist and specialist predator species, and to provide evidence that ants can have remarkable synergistic effects on the biological control of spider mites using specialist predatory mites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号