首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.  相似文献   

2.
Intermediate filaments (IFs) are components of the cytoskeleton involved in most cellular functions, including cell migration. Primary astrocytes mainly express glial fibrillary acidic protein, vimentin, and nestin, which are essential for migration. In a wound-induced migration assay, IFs reorganized to form a polarized network that was coextensive with microtubules in cell protrusions. We found that the tumor suppressor adenomatous polyposis coli (APC) was required for microtubule interaction with IFs and for microtubule-dependent rearrangements of IFs during astrocyte migration. We also show that loss or truncation of APC correlated with the disorganization of the IF network in glioma and carcinoma cells. In migrating astrocytes, vimentin-associated APC colocalized with microtubules. APC directly bound polymerized vimentin via its armadillo repeats. This binding domain promoted vimentin polymerization in vitro and contributed to the elongation of IFs along microtubules. These results point to APC as a crucial regulator of IF organization and confirm its fundamental role in the coordinated regulation of cytoskeletons.  相似文献   

3.
In higher vertebrates the cytoskeleton of glial cells, notably astrocytes, is characterized (a) by masses of intermediate filaments (IFs) that contain the hallmark protein of glial differentiation, the glial filament protein (GFP); and (b) by the absence of cytokeratin IFs and IF-anchoring membrane domains of the desmosome type. Here we report that in certain amphibian species (Xenopus laevis, Rana ridibunda, and Pleurodeles waltlii) the astrocytes of the optic nerve contain a completely different type of cytoskeleton. In immunofluorescence microscopy using antibodies specific for different IF and desmosomal proteins, the astrocytes of this nerve are positive for cytokeratins and desmoplakins; by electron microscopy these reactions could be correlated to IF bundles and desmosomes. By gel electrophoresis of cytoskeletal proteins, combined with immunoblotting, we demonstrate the cytokeratinous nature of the major IF proteins of these astroglial cells, comprising at least three major cytokeratins. In this tissue we have not detected a major IF protein that could correspond to GFP. In contrast, cytokeratin IFs and desmosomes have not been detected in the glial cells of brain and spinal cord or in certain peripheral nerves, such as the sciatic nerve. These results provide an example of the formation of a cytokeratin cytoskeleton in the context of a nonepithelial differentiation program. They further show that glial differentiation and functions, commonly correlated with the formation of GFP filaments, are not necessarily dependent on GFP but can also be achieved with structures typical of epithelial differentiation; i.e., cytokeratin IFs and desmosomes. We discuss the cytoskeletal differences of glial cells in different kinds of nerves in the same animal, with special emphasis on the optic nerve of lower vertebrates as a widely studied model system of glial development and nerve regeneration.  相似文献   

4.
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G0/G1 arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.  相似文献   

5.
The importance of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP) and vimentin for astrocyte function was studied by investigating astrocytes prepared from GFAP-/-and/or vimentin-/- mice. The rate of glucose uptake through facilitative hexose transporters was not affected by depletion of GFAP or vimentin. Similarly, the absence of these IF proteins did not affect ascorbate uptake, under control or cyclic AMP-stimulated conditions, or ascorbate efflux through volume-sensitive organic anion channels. However, compared with wild-type astrocytes, glutamine concentrations were increased up to 200% in GFAP-/- astrocytes and up to 150% in GFAP+/-astrocytes and this increase was not dependent on the presence of vimentin. GFAP-/- astrocytes in culture still contain IFs (made of vimentin and nestin), whereas GFAP-/-vim-/- cultured astrocytes lack IFs. Thus, glutamine levels appear to correlate inversely with GFAP, rather than depend on the presence of IFs per se. Furthermore, the effect of GFAP is dose-dependent since the glutamine concentration in GFAP+/- astrocytes falls between those in wild-type and GFAP-/-astrocytes.  相似文献   

6.
Intermediate filament protein partnership in astrocytes.   总被引:20,自引:0,他引:20  
Intermediate filaments are general constituents of the cytoskeleton. The function of these structures and the requirement for different types of intermediate filament proteins by individual cells are only partly understood. Here we have addressed the role of specific intermediate filament protein partnerships in the formation of intermediate filaments in astrocytes. Astrocytes may express three types of intermediate filament proteins: glial fibrillary acidic protein (GFAP), vimentin, and nestin. We used mice with targeted mutations in the GFAP or vimentin genes, or both, to study the impact of loss of either or both of these proteins on intermediate filament formation in cultured astrocytes and in normal or reactive astrocytes in vivo. We report that nestin cannot form intermediate filaments on its own, that vimentin may form intermediate filaments with either nestin or GFAP as obligatory partners, and that GFAP is the only intermediate filament protein of the three that may form filaments on its own. However, such filaments show abnormal organization. Aberrant intermediate filament formation is linked to diseases affecting epithelial, neuronal, and muscle cells. Here we present models by which the normal and pathogenic functions of intermediate filaments may be elucidated in astrocytes.  相似文献   

7.
The purpose of the present study was to investigate the effect of aluminum on gap junctional intercellular communication (GJIC) in cultured astrocytes. In the CNS the extracellular environment and metabolic status of neurons is dependent upon astrocytes, which are known to exhibit GJIC. This cell-to-cell communication provides a cytoplasmic continuity between adjacent cells, allowing exchange of diverse ions, second messengers, and metabolites. To study the effects of aluminum intoxication on GJIC in cultured glial cells, astroglial cell cultures obtained from fetal rat brains were exposed to aluminum lactate for 2-6 weeks. To demonstrate the metabolic coupling of neighboring cells, the technique of microinjection of the gap junction permeable substance neurobiotin was performed. Whereas in controls intensive GJIC was observed by dye transfer of neurobiotin from the microinjected cell into the adjacent astrocytes, aluminum treatment significantly impaired this cellular communication. As aluminum is known to affect cytoskeletal elements, additional investigations into the organization of intermediate filaments (glial fibrillary acid protein, GFAP) and microfilaments in control astrocytes and subsequent aluminum exposure were performed with the aid of fluorescence microscopy and rapid-freeze, deep-etch electron microscopy. Aluminum exposure led to an aggregation of GFAP-positive filaments near to the cell nucleus, accompanied by a destruction of the actin cytoskeleton, especially close to the cell membrane. Ultrastructurally these data could be verified as prominent areas without actin filaments contacting the cell membrane detectable in aluminum-treated astrocytes. Immunohistochemical staining of Cx43 revealed an impaired trafficking of this connexin into the cell prolongations following aluminum treatment, although electron-microscopic data revealed that gap junctions between adjacent astrocytes were still present after aluminum incubation for 24 days. In conclusion, in cultured astrocytes the morphological integrity of microfilaments and the intermediate filament network seem to be fundamental for the translocation of connexins from Golgi complex into the cellular prolongation to exhibit proper and extensive cellular communication through gap junctions.  相似文献   

8.
Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP(+) astrocytes (21% of FABP7(+) cells) and NG2(+) oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7(+)/NG2(+) cells, while there was a significant increase in FABP7(+)/GFAP(+) cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU(+) astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.  相似文献   

9.
Glial fibrillary acidic protein (GFAP) is the main component of the intermediate filaments in cells of astroglial lineage, including astrocytes in the CNS, nonmyelin forming Schwann cells and enteric glia. To address the function of GFAP in vivo, we have disrupted the GFAP gene in mice via targeted mutation in embryonic stem cells. Mice lacking GFAP developed normally, reached adulthood and reproduced. We did not find any abnormalities in the histological architecture of the CNS, in their behavior, motility, memory, blood-brain barrier function, myenteric plexi histology or intestinal peristaltic movement. Comparisons between GFAP and S-100 immunohistochemical staining patterns in the hippocampus of wild-type and mutant mice suggested a normal abundance of astrocytes in GFAP-negative mice, however, in contrast to wild-types, GFAP-negative astrocytes of the hippocampus and in the white matter of the spinal cord were completely lacking intermediate filaments. This shows that the loss of GFAP intermediate filaments is not compensated for by the up-regulation of other intermediate filament proteins, such as vimentin. The GFAP-negative mice displayed post-traumatic reactive gliosis, which suggests that GFAP up-regulation, a hallmark of reactive gliosis, is not an obligatory requirement for this process.  相似文献   

10.
Vimentin polymerizes via complex lateral interactions of coiled-coil dimers into long, flexible filaments referred to as intermediate filaments (IFs). Intermediate in diameter between microtubules and microfilaments, IFs constitute the third cytoskeletal filament system of metazoan cells. Here we investigated the molecular basis of the 3-D architecture of vimentin IFs by cryo-electron microscopy (cryo-EM) as well as cryo-electron tomography (Cryo-ET) 3-D reconstruction. We demonstrate that vimentin filaments in cross-section exhibit predominantly a four-stranded protofibrilar organization with a right-handed supertwist with a helical pitch of about 96 nm. Compact filaments imaged by cryo-EM appear surprisingly straight and hence appear very stiff. In addition, IFs exhibited an increased flexibility at sites of partial unraveling. This is in strong contrast to chemically fixed, negatively stained preparations of vimentin filaments that generally exhibit smooth bending without untwisting. At some point along the filament unraveling may be triggered and propagates in a cooperative manner so that long stretches of filaments appear to have unraveled rapidly in a coordinated fashion.  相似文献   

11.
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.  相似文献   

12.
The expression of intermediate filaments is developmentally regulated. In the mammalian embryo keratins are the first to appear, followed by vimentin, while the principal intermediate filament of the adult brain is glial fibrillary acidic protein. The intermediate filaments expressed by a cell thus reflect its state of differentiation. The differentiation state of cells, and especially of glial cells, in turn determines their ability to support axonal growth. In this study we used three new antibodies directed against three fish intermediate filaments (glial fibrillary acidic protein, keratin 8 and vimentin), in order to determine the identity and level of expression of intermediate filaments present in fish glial cells in culture. We found that fish astrocytes and oligodendrocytes are both able to express keratin 8 and vimentin. We further demonstrate that under proliferative conditions astrocytes express high keratin 8 levels and most oligodendrocytes also express keratin 8, whereas under nonproliferative conditions the astrocytes express only low keratin 8 levels and most oligodendrocytes do not express keratin 8 at all. These results suggest that the fish glial cells retain characteristics of immature cells. The findings are also discussed in relation to the fish glial lineage.  相似文献   

13.
Li  Jian  Zou  Yun  Li  Zhifang  Jiu  Yaming 《中国科学:生命科学英文版》2019,62(10):1368-1374
Many key cellular functions are regulated by the interplay of three distinct cytoskeletal networks, made of actin filaments,microtubules, and intermediate filaments(IFs), which is a hitherto poorly investigated area of research. However, there are growing evidence in the last few years showing that the IFs cooperate with actin filaments to exhibit strongly coupled functions.This review recapitulates our current knowledge on how the crosstalk between IFs and actin filaments modulates the migration properties, mechano-responsiveness and signaling transduction of cells, from both biophysical and biochemical point of view.  相似文献   

14.
目的 研究PDAPP转基因小鼠脑组织内反应性星形胶质细胞的活化程度。方法 通过免疫组织化学染色方法检测小鼠脑组织内反应性星形胶质细胞表达胶质纤维酸性蛋白 (GFAP)的情况 ,比较PDAPP转基因小鼠和C5 7 BL非转基因小鼠脑组织反应性星形胶质细胞的活化程度。结果 PDAPP转基因小鼠脑组织内反应性星形胶质细胞表达GFAP的水平明显高于C5 7 BL非转基因小鼠。结论 PDAPP转基因小鼠脑组织内存在明显的神经炎症反应  相似文献   

15.
16.
This study sets out to compare and contrast the astrocyte reaction in two unrelated experimental designs both resulting in marked chronic astrogliosis and natural motoneuron death in the wobbler mutant mouse and brain damage in the context of transplantation of xenogeneic embryonic CNS tissue into the striatum of newborn mice. The combined use of GFAP-labeling and confocal imaging allows the morphological comparison between these two different types of astrogliosis. Our findings demonstrate that, in mice, after tissue transplantation in the striatum, gliosis is not restricted to the regions of damage: it occurs not only near the site of transplantation, the striatum, but also in more distant regions of the CNS and particularly in the spinal cord. In the wobbler mutant mouse, a strong gliosis is observed in the spinal cord, site of motoneuronal cell loss. However, moderate astrocytic reaction (increased GFAP-immunoreactivity) can also be found in other wobbler CNS regions, remote from the spinal cord. In the wobbler ventral horn, where neurons degenerate, the hypertrophied reactive astrocytes exhibit a dramatic increase of glial fibrils and surround the motoneuron cell bodies, occupying most of the motoneuron environment. The striking and specific presence of hypertrophic astrocytes in wobbler mice accompanied by a dramatic increase of glial fibrils located in the vicinity of motoneuron cell bodies suggests that short astrogliosis fills the space left by degenerating motoneurons and interferes with their survival. In the spinal cord of xenografted mice, chronic astrogliosis is also observed, but only glial processes without hypertrophied cell bodies are found in the neuronal micro-environment. It is tempting to speculate that gliosis in the wobbler spinal cord, the local accumulation of astrocyte cell bodies, and high density of astrocytic processes may interfere with the diffusion of neuroactive substances in gliotic tissue, some of which are neurotoxic, and cooperate or even trigger neuronal death.  相似文献   

17.
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.  相似文献   

18.
Intermediate filaments (IFs), together with microtubules and microfilaments build up the cytoskeleton of most eukaryotic cells. Cytoplasmic IFs form a dense filament network radiating from the nucleus and extending to the plasma membrane. The association between the cytoplasmic and nuclear surfaces appears to provide a continuous link important for the organisation of the cytoplasm, for cellular communication, and possibly for the transport into and out of the nucleus. Cytoplasmic IFs approach the nuclear surface, thin fibrils seem to connect the IFs with the nuclear pore complexes and a direct interaction of cytoplasmic IFs with the nuclear lamin B has been observed by in vitro binding studies. However, none of the components that cross-link IFs to the nucleus has been unambiguously identified. Furthermore, if a direct interaction between cytoplasmic IFs and the nuclear lamin B occurs in vivo, the question of how cytoplasmic IFs get access to the nuclear interior remains to be resolved. The association of IFs with the plasma membranes involves different components, some of which are cell type specific. Two specialised complexes in epithelial cells: the desmosome and the hemidesmosome, serve as attachment sites for keratin filaments. Desmoplakin is considered as the cross-linking component of IFs to the desmosomal plaque, whereas BPAG1 (bullous pemphigoid antigen) would cross-link IFs at the hemidesmosomal plaque. In other cell types the modality of how IFs are anchored to the plasma membrane is less well understood. It involves different components such as the spectrin based membrane skeleton, ankyrin, myosin, plectin and certainly many other still unravelled partners. Association between the IFs and cellular membranes plays an important role in determining cell shape and tissue integrity. Thus, the identification and characterisation of the components involved in these interactions will be crucial for understanding the function of intermediate filaments.  相似文献   

19.
The role of intermediate filaments (IFs) in eukaryotic cells is still unclear. The disturbance of mitochondria distribution and function, in particular the enhanced production of reactive oxygen species (ROS) and decreased membrane potential, is observed in cells devoid of IFs. The aim of this work was to study the dependence of mitochondria sensitivity to oxidative stress on the presence of vimentin IFs. It was found that mitochondria are less sensitive to ROS in cells containing vimentin than in cells devoid of vimentin. Besides, mitochondrial membrane potential was demonstrated to increase upon regeneration of vimentin IFs in the cells. Substitution of Pro-57 by Arg in N-terminal part of the vimentin molecule abandoned its protective ability and the effect on mitochondrial membrane potential.  相似文献   

20.
中间纤维家族由约70个中间纤维蛋白组成,在真核细胞内组成横跨核膜和胞质的网状骨架.中间纤维最初仅仅被当做是细胞骨架的一种,主要起机械支撑作用.这个观点正发生快速的改变,因为越来越多的研究发现中间纤维蛋白参与各种主要的细胞信号通路,如细胞应激、细胞凋亡和14-3-3信号通路等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号