首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The second committed step in chlorophyll biosynthesis is the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to magnesium protoporphyrin IX (MgP) forming MgP monomethylester (MgPME). This reaction is catalyzed by the enzyme MgP methyltransferase (ChlM). Previous investigation of this enzyme has involved the use of time-consuming techniques requiring separation of products from substrates. More recent methyltransferase studies use coupling enzymes to monitor changes in absorption/fluorescence for the measurement of activity. However, due to the spectral properties of porphyrins, many of these assays are unsuitable for analysis of the catalytic properties of ChlM. Here we report the successful development of a coupled, continuous spectrophotometric assay to measure the activity of ChlM. The product of the methyltransferase reaction, S-adenosyl-l-homocysteine (SAH), is converted into adenine and then hypoxanthine by the recombinant coupling enzymes SAH nucleosidase and adenine deaminase, respectively. The appearance of hypoxanthine results in a decrease in absorbance at 265 nm.The utility of this assay was shown by the characterization of ChlM from the cyanobacterium Synechocystis sp. PCC 6803. Kinetic parameters obtained support data acquired using the discontinuous HPLC-based assay and provide further evidence for the stimulation of ChlM by the H subunit of magnesium chelatase (ChlH).  相似文献   

2.
Changes in the activity of the tRNA methyltransferases have been found in all differentiating systems studied. Activity was examined in extracts of Rana pipiens embryos and in larval and adult liver by in vitro assay using S-adenosyl-l-[methyl-14C]methionine as the methyl donor. Specific activities of tRNA methyltransferases decreased, beginning with the time of feeding, when using high concentrations of the crude liver enzyme. A new methyltransferase activity, glycine N-methyltransferase, appeared at the time of feeding. Apparently, the glycine methyltransferase is active before the onset of any of the characteristic metamorphic changes of other liver enzymes. Using partially purified enzyme from adult liver, the Km of glycine methyltransferase for S-adenosylmethionine is 0.3 mM and the Ki for S-adenosylhomocysteine, a competitive inhibitor, is 0.08 mM.  相似文献   

3.
Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.  相似文献   

4.
Guanidoacetate methyltransferase (EC 2.1.1.2) has been purified about 800-fold from rat liver. The purified preparation shows a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme is estimated to be 25,000 and 26,000 by Sephadex gel molecular-exclusion chromatography and by electrophoresis in polyacrylamide gradient gel, respectively. The sodium dodecyl sulfate-denatured enzyme also has a molecular weight of 26,000; thus, the enzyme is a monomeric protein. Guanidoacetate methyltransferase as isolated is catalytically inactive, but is readily reactivated by incubation with a thiol. The reactivated enzyme, which contains 3 mol of sulfhydryl groups/mol of enzyme, is again inactivated by oxidized glutathione. This inactivation is accompanied by the disappearance of two sulfhydryl residues. The relationship between the loss of enzyme activity and the number of residues disappeared indicates that the integrity of these sulfhydryl residues is critical for activity. The oxidized enzyme fails to bind the substrate S-adenosylmethionine as evidenced by the equilibrium dialysis study. Alkylation of the nonoxidizable sulfhydryl by N-ethylmaleimide shows that this residue is also essential for activity. UV absorption, fluorescence, and CD spectra show no difference between the reduced and oxidized enzymes, but the former is more susceptible to proteolytic attack by trypsin. The enzyme has an isoelectric pH of 5.3, and is most active at pH 9.0. From the CD spectrum, an α helix content of 15% is calculated. The Km values for guanidoacetate and S-adenosylmethionine are 97.5 and 6.73 μm, respectively, at pH 8.0 and 37 °C.  相似文献   

5.
The 16S ribosomal RNA methyltransferase enzymes that modify nucleosides in the drug binding site to provide self-resistance in aminoglycoside-producing micro-organisms have been proposed to comprise two distinct groups of S-adenosyl-l-methionine (SAM)-dependent RNA enzymes, namely the Kgm and Kam families. Here, the nucleoside methylation sites for three Kgm family methyltransferases, Sgm from Micromonospora zionensis, GrmA from Micromonospora echinospora and Krm from Frankia sp. Ccl3, were experimentally determined as G1405 by MALDI-ToF mass spectrometry. These results significantly extend the list of securely characterized G1405 modifying enzymes and experimentally validate their grouping into a single enzyme family. Heterologous expression of the KamB methyltransferase from Streptoalloteichus tenebrarius experimentally confirmed the requirement for an additional 60 amino acids on the deduced KamB N-terminus to produce an active methyltransferase acting at A1408, as previously suggested by an in silico analysis. Finally, the modifications at G1405 and A1408, were shown to confer partially overlapping but distinct resistance profiles in Escherichia coli. Collectively, these data provide a more secure and systematic basis for classification of new aminoglycoside resistance methyltransferases from producers and pathogenic bacteria on the basis of their sequences and resistance profiles.  相似文献   

6.
Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.  相似文献   

7.
Studies on glutathione S-alkyltransferase of the rat   总被引:18,自引:16,他引:2       下载免费PDF全文
1. A rat-liver enzyme catalysing the S-alkylation of glutathione by iodomethane and various other alkyl compounds has been identified and partially purified; its stability, specificity and response to inhibitors and activators and to changes in reaction pH have been studied. 2. The enzyme is distinct from glutathione S-aryltransferase, but both enzymes respond similarly to various inhibitors. 3. A similar enzyme has been found in the kidney and adrenal of rat and in the liver and kidney of numerous species. 4. The identity and the physiological role of the enzyme are discussed.  相似文献   

8.
Assay for S-adenosylmethionine: methionine methyltransferase   总被引:1,自引:0,他引:1  
A quantitative assay for S-adenosylmethionine: methionine methyltransferase in phosphate buffer extracts has been developed. This enzyme catalyzes the biosynthesis of S-methylmethionine from methionine and S-adenosylmethionine. The radioactively labeled product, S-methylmethionine, is first separated from the radioactively labeled substrate, l-methionine, by means of ion-exchange chromatography. Once separated thusly, the amount present can then be directly determined by the use of a liquid scintillation spectrometer.  相似文献   

9.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

10.
Quantitative expressions have been developed for systems such as yeast reductions where competing enzymes act on one substrate to yield two enantiomeric products. These expressions relate the observed stereochemical variables, the extent of conversion (C), the optical purity expressed as enantiomeric excess (ee), and the initial substrate concentration (A0) to the kinetic parameters KR and KS (apparent Michaelis constants) and y (VRVS, the ratio of maximal velocities) of such competing enzymes. The expressions have been experimentally verified using a purified competing enzyme system of l- and d-lactic dehydrogenases. Furthermore, the enantioselective reduction of β-keto esters by intact yeast cells has been examined by means of this kinetic analysis.  相似文献   

11.
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-l-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-l-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.  相似文献   

12.
The regulation of serine hydroxymethyltransferase, methylenetetrahydrofolate reductase, and methyltetrahydropteroylpolyglutamate:homocysteine methyltransferase was investigated in Neurospora crassa. Adding choline to the medium decreased the specific activity of these enzymes. Methionine potentiated the choline effect, but, when added alone, was without effect. Neither choline, methionine, nor S-adenosylmethionine appears to be the immediate corepressor of synthesis of these enzymes.Several nonallelic mutants were examined for the enzymes of methionine methyl group synthesis. The formate-requiring mutant for lacks serine hydroxymethyltransferase. The methionine-requiring mutants me-1 and me-8 lack, respectively, the reductase and the methyltransferase. The methionine-requiring mutants me-1, me-6 (folate polyglutamate synthetase deficient) and me-8 were found to have significantly higher serine hydroxymethyltransferase specific activities than did the wild-type strain.  相似文献   

13.
14.
Homocysteine-dependent transmethylases utilizing 5-methyltetrahydropteroylglutamic acid and S-adenosylmethionine as methyl donors have been examined using ammonium sulphate fractions prepared from isolated mitochondria of pea cotyledons. Substantial levels of a 5-rnethyltetrahydropteroylglutamate transmethylase were detected, the catalytic properties of this enzyme being found similar to those of a previously reported enzyme present in cotyledon extracts. The mitochondrial 5-CH3-H4PteGlu transmethylase had an apparent Km of 25 μM for the methyl donor, was saturated with homocysteine at 1 mM and was inhibited 50% by l-methionine at 2.5 mM. At similar concentrations of methyl donor the mitochondrial S-adenosylmethionine methyltransferase was not saturated. Mitochondrial preparations were found capable of synthesizing substantial amounts of S-adenosylmethionine but lacked ability to form S-methylmethionine. Significant levels of β-cystathionase, cystathionine-γ-synthase, l-homoserine transacetylase and l-homoserine transsuccinylase were detected in the isolated mitochondria. The activity of the enzymes of homocysteine biosynthesis was not affected by l-methionine in vitro. It is concluded that pea mitochondria have ability to catalyze the synthesis of methionine de novo.  相似文献   

15.
Protein methylase II (S-adenosylmethionine:protein—carboxyl methyltrans-ferase), which modifies free carboxyl residues of protein, was purified from both rat and human blood, and properties of the enzymes were studied. The pH optima for the reaction were dependent on the substrate proteins used; pH 7.0 was found with endogenous substrate, 6.1 with plasma, 6.5 with γ-globulin, and 6.0 with fibrinogen. The molecular weight of the enzymes from both rat and human erythrocytes were identical (25,000 daltons) determined by Sephadex G-75 chromatography. Partially purified enzyme from rat erythrocytes showed three peaks on electrofocusing column at pH 4.9, 5.5 and 6.0. The Km values of the enzymes from rat and human erythrocytes showed 3.1 × 10?6m and 1.92 × 10?6m at pH 6.0, 1.96 × 10?6m and 1.78 × 10?6m at pH 7.2, respectively, for S-adenosyl-l-methionine. It is also found that S-adenosyl-l-homocysteine is a competitive inhibitor for protein methylase II with Ki value of 1.6 × 10?6m.  相似文献   

16.
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.  相似文献   

17.
The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase RlmN that methylates the C-2 position. Database searches with the Cfr sequence have revealed a large group of closely related sequences from all domains of life that contain the conserved CX3CX2C motif characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. Phylogenetic analysis of the Cfr/RlmN family suggests that the RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer. A structural model of Cfr has been calculated and used as a guide for alanine mutagenesis studies that corroborate the model-based predictions of a 4Fe–4S cluster, a SAM molecule coordinated to the iron–sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis. The investigation has identified essential amino acids and Cfr variants with altered reaction mechanisms and represents a first step towards understanding the structural basis of Cfr activity.  相似文献   

18.
Rickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB. However, no rickettsial lysine methyltransferase has been characterized. Bioinformatic analysis of genomic DNA sequences of Rickettsia identified putative lysine methyltransferases. The genes of the potential methyltransferases were synthesized, cloned, and expressed in Escherichia coli, and expressed proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The methyltransferase activities of the purified proteins were analyzed by methyl incorporation of radioactively labeled S-adenosylmethionine into recombinant fragments of OmpB. Two putative recombinant methyltransferases (rRP789 and rRP027-028) methylated recombinant OmpB fragments. The specific activity of rRP789 is 10- to 30-fold higher than that of rRP027-028. Western blot analysis using specific antibodies against trimethyl lysine showed that both rRP789 and rRP027-028 catalyzed trimethylation of recombinant OmpB fragments. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis showed that rRP789 catalyzed mono-, di-, and trimethylation of lysine, while rRP027-028 catalyzed exclusively trimethylation. To our knowledge, rRP789 and rRP027-028 are the first biochemically characterized lysine methyltransferases of outer membrane proteins from Gram-negative bacteria. The production and characterization of rickettsial lysine methyltransferases provide new tools to investigate the mechanism of methylation of OmpB, effects of methylation on the structure and function of OmpB, and development of methylated OmpB-based diagnostic assays and vaccine candidates.  相似文献   

19.
S-Adenosylmethionine:homocysteine methyltransferase activity was monitored during embryogenesis of the housefly, Musca domestica. A rapid decrease in the activity of S-adenosylmethionine:homocysteine methyltransferase was observed during the first 3 hr of embryogenesis. Activity continued to decline less rapidly until hatching at 12 hr. An inverse relationship was found to exist between the activities of S-adenosylmethionine:homocysteine methyltransferase and the tRNA methyltransferases during Musca embryogenesis.  相似文献   

20.
L-929 cell surface membranes were incubated with S-adenosyl-l-[methyl-3H]-methionine and found to contain phosphatidylethanolamine: S-adenosylmethionine N-methyltransferase (phosphatidylethanolamine N-methyltransferase) activity. The enzyme or combination of enzymes responsible for this activity methylated endogenous phosphatidylethanolamine and its methylated derivatives to yield phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidylcholine. Maximum enzyme activity was expressed at pH 6.9, the reaction was not dependent on the presence of divalent cations, and exogenously added phospholipids did not stimulate the rate of reaction. Phospholipid methylation was inhibited by S-adenosyl-l-homocysteine and by local anaesthetic drugs such as chlorpromazine and tetracaine which partition into the lipid bilayer. Control experiments demonstrated that the surface membrane-associated methyltransferase activity was not due to contamination of surface membrane preparations with intracellular membranes. Surface membranes were found to have higher specific methyltransferase activities than whole L-cell homogenates or endoplasmic reticulum-enriched microsomes. The low rate of methyltransferase function expressed in vitro (approximately 1 pmol/min · mg protein) suggests that phospholipid methylation is not a major metabolic source of surface membrane phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号