首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
Adem Bicakci 《Biologia》2006,61(4):457-461
In this study, pollen grains were identified using Durham sampler in the atmosphere of Sakarya in 2000 and 2001. During these two years, a total of 10 805 pollen grains were recorded. A total of 5 386 pollen grains per cm2 were recorded in 2000 and a total of 5 419 pollen grains per cm2 in 2001. Pollen fall in the years 2000–2001 comprised grains belonging to 40 taxa and some unidentified pollen grains. Of these taxa, 22 belonged to arboreal and 18 taxa to non arboreal plants. Total pollen grains consisted of 69.45% grains from arboreal plants, 28.11% grains from non-arboreal plants and 2.44% unidentified pollen grains. In the region investigated, Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Salix sp., Platanus sp., Populus sp., Carpinus sp., Fagus sp., Chenopodiaceae/Amaranthaceae, Xanthium sp., Moraceae, Corylus sp., Fraxinus sp., and Urticaceae released the greatest amount of pollen. The season of maximum pollen fall was from March to May, with a prevalence of arboreal pollen in the first months, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

2.
This report describes qualitatively and quantitatively the level of pollen in the atmosphere in the central region of Bursa. Turkey. In 1991, the season of maximum pollen concentration was from April to June, with a prevalence of arboreal pollen during the initial months, and of pollen from herbaceous plants in the latter months. During the year of research, 24 taxa of arboreal and 12 taxa of herbaceous pollen grains were collected and identified. In the region investigatedPinus, Cupressaceae/Taxaceae,Abies nordmanniana, Platanus orientalis, Olea europaea, Gramineae, Urticaceae, Chenopodiaceae/Amaranthaceae,Artemisia and Compositae were responsible for the greatest amounts of pollen. Some important allergenic pollens such asOlea europaea, Gramineae and Urticaceae were also found in high concentration. In this study, a pollen calendar for the region is presented.  相似文献   

3.
In this study, airborne pollen grains of Yalova province were investigated using VPSS 2000 from January to December 2004. During studying period, a total of 22409 pollen grains/m3 which belonged to 46 taxa and 74 unidentified pollen grains were recorded. From the identified taxa, 26 belong to arboreal and 20 to non-arboreal plants. Total pollen grains consist of 80.50% arboreal, 19.17% non-arboreal plants and 0.33% unidentified pollen grains. In the investigated region, from arboreal plant taxa Platanus spp. (29.08%), Cupressaceae/Taxaceae (21.22%), Pinus spp. (7.34%), Alnus spp. (4.75%), Castanea spp. (3.03%), Quercus spp. (3.07%), Olea spp. (2.50%), Acer spp. (2.21%), Corylus spp. (1.41%) and Fagus spp. (1.15%), and from non-arboreal plant taxa Poaceae (10.01%), Asteraceae (2.86%), Plantago spp. (1.47%) and Artemisia spp. (1.11%) were responsible for the greatest amounts of pollen.  相似文献   

4.
This is the first data from a pollen survey in Vigo, an Atlantic city in northwest Spain. The pollen calendar for Vigo is presented, as well as the pollination period for the nine most important allergenic plants. Through 1995, 30 083 pollen grains belonging to 52 taxa, were recorded using the Lanzoni VPPS 2000 volumetric spore-trap. The most relevant taxa found were: Urticaceae,Pinus, Poaceae andQuercus (75% of the total pollen),Betula, Castanea, Cupressaceae, Chenopodiaceae, Ericaceae, Myrtaceae,Olea, Plantago, Platanus andRumex (21%), and the final 4% was distributed mainly among pollen types, such as:Corylus, Alnus, Fabaceae, Compositae,Artemisia andCedrus. Of the total annual pollen count, 56% was found in March and April. Another, secondary peak was recorded in June corresponding to the flowering period of herbaceous species. The high pollen total of Urticaceae (7625 grains, 25% of the total) should be highlighted. The percentages ofOlea europaea (565 grains) should be noted as well, taking into account its geographical distribution.  相似文献   

5.
Analysis of Airborne Pollen Fall in Edirne, Turkey   总被引:1,自引:0,他引:1  
In the atmosphere of Edirne 12691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm~2 were recorded in 2000 and a total of 6502 pollen grains per cm~2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp., Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp., Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

6.
In the atmosphere of Edirne 12 691 pollen grains belonging to 42 taxa were identified by using of Durham sampler in 2000 and 2001. A total of 6 189 pollen grains per cm2 were recorded in 2000 and a total of 6 502 pollen grains per cm2 in 2001. Total pollen grains consisted of 71.81% grains from arboreal plants, 25.88% grains from non-arboreal plants and 2.31% unidentified pollen grains. Pollen from the following taxa were also found to be prevalent in the atmosphere of Edirne: Gramineae, Pinus sp., Quercus sp.,Cupressaceae/Taxaceae, Platanus sp., Salix sp., Morus sp., Populus sp., Carpinus sp., Juglans sp.,Chenopodiaceae/Amaranthaceae, Fraxinus sp., Fagus sp., Ulmus sp., Ailanthus sp., Alnus sp., Ostrya sp.,Helianthus sp. The season of maximum pollen fall was from April to June, with a prevalence of arboreal pollen in the first month, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

7.
The aim of this work is to present the atmospheric pollen concentrations of Palencia, Spain. Data were collected for three consecutive years (1990–92). An active volumetric pollen trap, type CAP2, was used. During this time, 88 different pollen types were identified, of which 27 occured at more than 0.15% of the total pollen recorded annually. These types formed the main pollen spectrum of this sampling station. Pollen coming from herbs (Poaceae, Chenopodiaceae, Plantago Urticaceae, etc.) was predominant (53.79%); arboreal pollen (Quercus, Populus Cupressaceae, etc.) represented 42.11%, and pollen from shrubs (Ericaceae, Sambucus etc.) only 4.10%.

May and June was the time of the year with maximum pollen emission to the air. This was due to the quantities of pollen coming from Poaceae and Quercus which together represent 47.25% of the pollen recorded over the three‐year sampling period. Herbaceous pollen appeared throughout the year with maximum concentrations recorded in the spring, coinciding with the maximum levels of arboreal pollen in the atmosphere.

An analysis of multiple regression and one‐way anova test between pollen concentrations and selected meteorological parameters show that relative humidity and average temperature are the meteorological factors most correlated with the concentrations of specific pollen types (Plantago, Ligustrum, Sambucus, Carex). In the same way, when the winds are predominantly from the northeast (second quadrant), there are higher pollen concentrations of Sambucus Ericaceae and Mercurialis.  相似文献   

8.
Pollen data from the atmosphere of Vigo, NW Spain was collected using a Hirst type pollen trap over a seven-year period (1995–2001). A total of 56 different pollen types were identified, among which Urticaceae, Poaceae, Betula and Quercus represent the greatest risk for people suffering from allergic rhinitis (hay fever) or other allergic diseases. Although in the atmosphere of Vigo the presence of allergenic pollen is constant throughout the year, the months of March and April account for 40% of the annual total pollen count. Two main risk periods have been identified for asthma and allergies: (1) March – April, and (2) June – July, the latter is of greater importance due to high concentrations of Poaceae pollen. Correlation analysis with meteorological parameters demonstrates that rainfall, relative humidity, maximum temperature, sun hours and north-easterly winds are the main factors influencing the average daily pollen concentrations in the atmosphere.  相似文献   

9.
Airborne pollen grains in the atmosphere of Bozuyuk were investigated over a 2 yr period from 2000 to 2001 using a Durham sampler. A total number of pollen grains of 5 170 pollen grains belonging to 32 taxa were identified and recorded along with some unidentified pollen grains. Of all the pollen grains, 78.66% were arboreal, 19.20% were non-arboreal, and 2.12% were unidentified. The majority of pollen grains investigated were Pinus, Platanus, Quercus, Cupressaceae, Poaceae, Fagus, Salix, Rosaceae, Urticaceae, Asteraceae, and Chenopodiaceae. The maximum number of pollen grains was recorded in May.  相似文献   

10.
Pollen loads in the atmosphere of Darwin, a city located in the wet‐dry tropics of Australia, have been monitored for the period March 2004 to November 2005 as part of a large research program looking at atmospheric particles and human health. Seven pollen types dominate the pollen spectrum, the herbaceous families of Poaceae (grasses) and Cyperaceae (sedges), as well as several native tree and shrub taxa, Acacia, Callitris, Casuarina, Arecaceae and Myrtaceae. The pollen loads were found to have a strong seasonal component associated with the alternating wet (November to March) and dry (April to October) seasons of the region. Seventy percent of the yearly pollen load is captured during the dry season, with the peak pollen period occurring at the onset of the dry season (April–May) when most grasses are in flower. The daily pollen concentration decreases as the dry season progresses, accompanied by a change in composition; fewer herbaceous but increasing woody taxa. Preliminary health outcomes reveal a positive association between hay fever, Poaceae and Acacia pollen, as well as a significant association between total fungal spore concentrations and asthma. The Darwin record contrasts significantly with surveys conducted in the subtropical and temperate cities of Australia where temperature as opposed to rainfall and the prevalence of northern hemisphere exotic tree species have a greater influence over the seasonality and composition of the pollen loads.  相似文献   

11.
A comparative study is presented of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae, collected during 1995 with Hirst samplers (Burkard or Lanzoni) at five sites in western Spain: two Mediterranean sites located in the south (Huelva and Seville) and three Atlantic sites in the north (Orense, Vigo and Santiago). The annual pollen of Poaceae and Plantaginaceae collected in the Atlantic cities was found to be twice that in the Mediterranean sites, and the total amount of Urticaceae was higher at sites with an urban environment and subject to sea influence (Vigo, Huelva and Seville). At all the sites, the start of the main pollination periods (MPP) took place in the following order: Urticaceae, Plantaginaceae and Poaceae. It was also observed that the MPP of these three pollen types began earlier in Huelva and Seville, where the mean temperatures necessary for the beginning of pollen emissions are recorded very early. Regarding the variation in pollen concentrations throughout the year, Urticaceae presented peaks of maximum concentration in March (Huelva, Seville, Vigo and Orense) and June (Santiago); Plantaginaceae in March (south) and June (north); and Poaceae in May (south) and June–July (north). At northern sites, pollen emissions of Urticaceae and Plantaginaceae continued throughout the summer, while in the south they decreased considerably from May onwards. From the allergenic point of view, the indices of reactivity described for Urticaceae and Poaceae were exceeded more often at northern sites, in particular at Vigo. The meteorological conditions associated with periods of highest pollen emission of these three herbaceous types are a rise in mean temperature, light or absent rainfall, and abundant sunshine. The statistical correlations between pollen emissions and meteorological factors were not well-defined, either for the stations or for all the taxa, although they were clearer for the Atlantic cities and for Urticaceae.  相似文献   

12.
Species of Echium are clearly entomophilous, but they release great amounts of pollen into the atmosphere with its consequent anemophilous transport, because their high pollen production, the smallness of the grains, and the exserted position of their anthers. Using three volumetric airborne sporetraps in Extremadura (SW of Spain) between 1994 and 1998, we found that Echium pollen reached pollen concentrations similar to or greater than other anemophilous plants. The main pollination period appeared from April to June. The maximum peak daily concentration reached 35.9 grains/m3 and the annual recorded totals showed interannual variations between 64.2 and 614.4. Correlations were calculated between the daily pollen concentrations and the meteorological parameters rain, temperature, wind direction and velocity and relative humidity. Wind direction seems to be significant, warm dry air seems to facilitate the release of pollen into the atmosphere and increase its concentrations. Hourly pollen concentration reached a maximum between 11:00 and 12:00 and a minimum at 07:00, and the patterns were very similar in the three localities studied. This would indicate that the presence of Echium pollen in the atmosphere is related to the processes of anthesis of the populations near the traps, and would not correspond to a model of transport from distant zones.  相似文献   

13.
For the first time, a volumetric study ofBuenos Aires city atmosphere was conductedusing a Lanzoni collector from March 1997through March 1998. Fifty-four pollen typeswere recorded of which 13 had a relativeconcentration of more than 1% of the yearlytotal. The lowest concentration of pollengrains was recorded in June, when Urticas,pp., Morus spp., and Myrtaceae were low.On the other hand, the highest concentration ofpollen grains was reached in September, with anincrease in Fraxinus spp. Theaeropalynological record may be divided intothree periods: *AP Dominant from July toOctober, *NAP Dominant from November toMarch, and *Residual Period from April toJune with low pollen concentrations.The greatest number of species was recorded inNovember, when 32 types were present, and thelowest number of species in June, when only 13pollen types were recorded. In June, the pollenconcentration was not dominated by any specieswhereas in September 85% of the pollen wasderived from one species of Fraxinus.Earlier studies on the aeropalynology of BuenosAires City were performed using Tauber andRotorod samplers. They were comparable to thisstudy, especially since the pollen peak wasreached in September, although the main pollenproducing species were different.  相似文献   

14.
The influence of meteorological parameters on airborne pollen of Australian native arboreal species was investigated in the sub-tropical city of Brisbane, Australia over the five-year period, June 1994–May 1999. Australian native arboreal pollen (ANAP), shed by taxa belonging to the families Cupressaceae, Casuarinaceae and Myrtaceae accounts for 18.4% of the total annual pollen count and is distributed in the atmosphere during the entire year with maximum loads restricted to the months May through November. Daily counts within the range 11–100 grains m–3 occurred over short intervals each year and were recorded on 100 days during the five-year sampling period. Total seasonal ANAP concentrations varied each year, with highest annual values measured for the family Cupressaceae, for which greater seasonal frequencies were shown to be related to pre-seasonal precipitation (r 2 = 0.76, p = 0.05). Seasonal start dates were near consistent for the Cupressaceae and Casuarinaceae. Myrtaceae start dates were variable and established to be directly related to lower average pre-seasonal maximum temperature (r 2 = 0.78, p = 0.04). Associations between daily ANAP loads and weather parameters showed that densities of airborne Cupressaceae and Casuarinaceae pollen were negatively correlated with maximum temperature (p < 0.0001), minimum temperature (p < 0.0001) and precipitation (p < 0.05), whereas associations with daily Myrtaceae pollen counts were not statistically significant. This is the first study to be conducted in Australia that has assessed the relationships between weather parameters and the airborne distribution of pollen emitted by Australian native arboreal species. Pollen shed by Australian native Cupressaceae, Casuarinaceae and Myrtaceae species are considered to be important aeroallergens overseas, however their significance as a sensitising source in Australia remains unclear and requires further investigation.  相似文献   

15.
The aim of the study was to compare the pollen spectra recorded in rural and urban environments in order to examine whether pollen data obtained in the urban environment could also represent the situation in surrounding rural areas and how urban planting affects the regional pollen spectrum. Daily airborne pollen observations were performed with a volumetric Hirst type trap in Moscow (Russia). Modified Tauber traps were located in the Moscow region. The Tauber traps were installed and treated according to Pollen Monitoring Programme (PMP) guidelines. Spearman correlation coefficients were determined between the percentage of total pollen recorded in the Tauber and Hirst type samplers. The data showed that the Tauber spectra are characterised by higher taxonomic variability, mainly due to the greater occurrence of local herbaceous plants. Pollen types registered by Hirst type samplers were predominantly represented by anemophilous arboreal species, used in urban planting. A significant correlation for annual sums was only observed for Betula pollen, the most abundant component in both sampler types. Data obtained in big cities for dominant taxa can be extrapolated to the surrounding rural territories. The simultaneous use of volumetric and gravimetric samplers can be very useful for palaeo-ecological studies to evaluate the presence of local and transported pollen.  相似文献   

16.

Based mainly on pollen influx data, an attempt is made at reconstructing Holocene tree‐line fluctuations and palaeotemperatures in central Troms, North Norway. Both past and present‐day (Tauber trap) pollen influx data suggest that influx rates exceeding 250–300 pollen/cm2/year for each of the major arboreal taxa (Betula pubescens and Pinus sylvestris) are only found at sites with corresponding forest types in the immediate surroundings. High influx rates, raised tree‐lines and favourable climatic periods are recorded at 7500–4500 and 3000–2600 B.P. Betula and Pinus woodlands may have reached more than 200 m above their present altitude limits, suggesting a July mean temperature 2°C higher than at present during the Holocene optimum.  相似文献   

17.
The annual sums of daily airborne pollen concentrations fluctuate from year to year. It has been suggested that for some taxa there is a regular or alternating pattern in these fluctuations. On the other hand, environmental changes may lead to decreasing or increasing trends in airborne pollen concentrations. These two phenomena can only be studied reliably on the basis of long-term volumetric observations of abundantly occurring pollen types. For this study two arboreal (Betula and Quercus) and two herbaceous (Poaceae and Urtica) types were chosen.

For some of these pollen types a weak but significant trend is observed. For the arboreal types (Quercus and Betula) there appears to be a rather constant biennial fluctuating rhythm.  相似文献   

18.
Pollen grains in the atmosphere of Bratislava were quantitatively and qualitatively analysed during an 8-year period (2002–2009) using a Burkard volumetric pollen trap. The mean annual total pollen grain count recorded during this period was 36,608, belonging to 34 higher plant taxa (22 trees and/or shrubs and 12 herbaceous species). The maximum annual total pollen grain count (50,563) was recorded in 2003 and the minimum (14,172) in 2009. The taxa contributing the highest concentration of pollen grains were Betula, Urticaceae, Cupressaceae-Taxaceae, Populus, Pinus, Poaceae and Ambrosia. During the study period, there was a remarkable increase in the number of pollen grains from February to April, with the highest daily mean pollen counts recorded in April. Total pollen concentration began to decrease markedly in May, but there was a second increase between July and August, followed by a decrease in September. The timing and length of the pollen seasons varied. Betula and Poaceae showed a rather constant 2-year fluctuating rhythm. The relationships between airborne pollen concentration and meteorological variables were assessed. Based on these results, the first pollen calendar in Slovakia has been constructed for the area of Bratislava, which provides a great deal of useful and important information.  相似文献   

19.
An investigation of airborne pollen in northern Mexico City was carried out for one year. A total of 24 taxa were identified and classified according to the growing form in pollen of trees, weeds and grasses. Pollen grains were recorded all year round with a peak in December. The trees group showed the highest quantity of pollen as well as taxa diversity, although its peak period was in the dry season. The weeds and grasses emitted a larger quantity of pollen in the rainy season. The dominant taxa wereAlnus, Casuarina, Compositae and Gramineae. As for their relation with meteorological parameters, we found that the increase of pollen concentration was related to high temperatures, low relative humidity and high wind speed, the latter causing an increase of airborne pollen with no dilution at all. The hours with the highest pollen concentration where from 16:00 to 18:00.  相似文献   

20.
An investigation of airborne pollen in northern Mexico City was carried out for one year. A total of 24 taxa were identified and classified according to the growing form in pollen of trees, weeds and grasses. Pollen grains were recorded all year round with a peak in December. The trees group showed the highest quantity of pollen as well as taxa diversity, although its peak period was in the dry season. The weeds and grasses emitted a larger quantity of pollen in the rainy season. The dominant taxa wereAlnus, Casuarina, Compositae and Gramineae. As for their relation with meteorological parameters, we found that the increase of pollen concentration was related to high temperatures, low relative humidity and high wind speed, the latter causing an increase of airborne pollen with no dilution at all. The hours with the highest pollen concentration where from 16:00 to 18:00.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号