首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death protein. More significantly, this protein is a novel target for extracellular ATP in its function as a key negative regulator of plant cell death.  相似文献   

2.
Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36–48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling.  相似文献   

3.
4.
Programmed cell death (PCD) is a common process in eukaryotes during development and in response to pathogens and stress signals. Bax inihibitor-1 (BI-1) is proposed to be a cell death suppressor that is conserved in both animals and plants, but the physiological importance of BI-1 and the impact of its loss of function in plants are still unclear. In this study, we identified and characterized two independent Arabidopsis mutants with a T-DNA insertion in the AtBI1 gene. The phenotype of atbi1-1 and atbi1-2, with a C-terminal missense mutation and a gene knockout, respectively, was indistinguishable from wild-type plants under normal growth conditions. However, these two mutants exhibit accelerated progression of cell death upon infiltration of leaf tissues with a PCD-inducing fungal toxin fumonisin B1 (FB1) and increased sensitivity to heat shock-induced cell death. Under these conditions, expression of AtBI1 mRNA was up-regulated in wild-type leaves prior to the activation of cell death, suggesting that increase of AtBI1 expression is important for basal suppression of cell death progression. Over-expression of AtBI1 transgene in the two homozygous mutant backgrounds rescued the accelerated cell death phenotypes. Together, our results provide direct genetic evidence for a role of BI-1 as an attenuator for cell death progression triggered by both biotic and abiotic types of cell death signals in Arabidopsis.  相似文献   

5.
Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell–cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which had no known function hitherto, is a negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis.Programmed cell death (pcd)1 is a genetically controlled dismantling of cells, which is indispensable for plant development and stress-adaptive responses. In development, pcd is invoked to facilitate xylem tracheary element differentiation, to remodel leaf shape, and to delete ephemeral cells and organs such as embryonic suspensor cells (13). In response to drought stress, pcd is used to break root apical meristem dominance in order to remodel root system architecture as an adaptive response to water deficit (4). Additionally, a specialized form of pcd known as the hypersensitive response kills plant cells at the epicenter of attack by certain pathogens, which activate the effector-triggered immune response (5, 6). A detailed understanding of the signal transduction pathways that trigger, propagate, and terminate plant pcd requires identification of the key components of the underlying protein networks. Our group has been using Arabidopsis cell death induced by fumonisin B1 (FB1) as an experimental system to study plant pcd and identify the key regulatory proteins (6).FB1, a mycotoxin that triggers cell death in both animal and plant cells (8, 9), disrupts sphingolipid biosynthesis via inhibition of ceramide synthase (10). Several proteins directly involved in sphingolipid biosynthesis and metabolism have been shown to regulate FB1-induced plant pcd because of their influence on levels of metabolic intermediates, such as long chain bases (LCBs), which act as second messengers of plant cell death. For example, activity of serine palmitoyltransferase, the enzyme catalyzing the first rate-limiting step in sphingolipid biosynthesis, strongly controls Arabidopsis sensitivity to FB1 (11). Serine palmitoyltransferase has two subunits – LCB1 and LCB2. Resistance to FB1-induced death is manifested in Arabidopsis loss-of-function mutants of LCB1 (12) and LCB2a (13) genes. Overexpression of endogenous Arabidopsis 56 amino acid polypeptides that interact with and stimulate serine palmitoyltransferase activity increases sensitivity to FB1, whereas RNA interference lines have reduced sensitivity to the mycotoxin (11).Although exogenous ceramide can suppress FB1-induced death in animal cells (14), it fails to block cell death in Arabidopsis (15), indicating that other factors work in concert with ceramide depletion in pcd induction in Arabidopsis. Identification of these factors is essential to the understanding of general pcd regulation in plants, given that Arabidopsis responses to FB1 share common features with the pathogen-induced hypersensitive response (15). Clues that may lead to mechanistic details of pcd could arise from focusing on known regulatory signals that control FB1-mediated responses. FB1-induced cell death is regulated by extracellular ATP (eATP) (16) and the plant defense hormone, salicylic acid (SA) (17). NahG transgenic plants, which degrade SA, are resistant to FB1 as are pad4–1 mutants, which have an impaired SA amplification mechanism (17). Mutants that constitutively accumulate greater amounts of SA, cpr1 and cpr6, manifest increased susceptibility to FB1 (17). Thus, SA functions as a positive regulator of FB1-induced pcd. In contrast, eATP is a negative regulator of FB1-triggered pcd in Arabidopsis. Accordingly, FB1 activates eATP depletion prior to onset of death and addition of exogenous ATP to FB1-treated Arabidopsis cell suspension cultures blocks pcd (16). This suggests that SA- and eATP-mediated signaling converge onto the signal transduction cascade activated by FB1 to promote or inhibit pcd, respectively.We have developed an experimental system, which harnesses the effects of exogenous ATP and SA on FB1-induced death, to identify important proteins that regulate Arabidopsis pcd. It utilizes Arabidopsis cell suspension cultures treated with these compounds and proteomic analyses restricted to the mobile phase of the extracellular matrix. The extracellular matrix proteome consists of cell surface proteins fully or partially embedded in the plasma membrane, proteins immobilized in the cell wall, and soluble mobile proteins in the apoplastic fluid – the mobile phase. The rationale for this is predicated on the hypothesis that cells constantly communicate with their neighbors by releasing and sensing signal molecules in the mobile phase (18). Arabidopsis has more than 600 plasma membrane receptor kinases (19) and ∼400 G-protein-coupled receptors (20, 21), which sense extracellular signals at the cell surface and activate a cytoplasmic response. We hypothesize that upon receiving an exogenous chemical, cell–cell signaling is activated either by directly binding the chemical if it has a cell surface receptor, or by modulating signal regulatory proteins in the mobile phase to reset the communication and transmit new signals. Therefore, in this study, we used ATP and SA treatments to identify pcd regulatory proteins in the mobile phase of the Arabidopsis extracellular matrix. We provide a novel extracellular matrix putative cell death regulatory protein network and present evidence validating the role of CYCLASE1 in FB1- and pathogen-induced pcd and the control of disease symptoms.  相似文献   

6.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   

7.
Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death protein. More significantly, this protein is a novel target for extracellular ATP in its function as a key negative regulator of plant cell death.ATP is a ubiquitous, energy-rich molecule of fundamental importance in living organisms. It is a key substrate and vital cofactor in many biochemical reactions and is thus conserved by all cells. However, in addition to its localization and functions inside cells, ATP is actively secreted to the extracellular matrix where it forms a halo around the external cell surface. The existence of this extracellular ATP (eATP)1 has been reported in several organisms including bacteria (1), primitive eukaryotes (2), animals (3), and plants (46). This eATP is not wasted, but harnessed at the cell surface as a potent signaling molecule enabling cells to communicate with their neighbors and regulate crucial growth and developmental processes.In animals, eATP is a crucial signal molecule in several physiological processes such as neurotransmission (7, 8), regulation of blood pressure (9), enhanced production of reactive oxygen species (ROS) (10), protein translocation (11), and apoptosis (12). Extracellular ATP signal perception at the animal cell surface is mediated by P2X and P2Y receptors, which bind ATP extracellularly and recruit intracellular second messengers (13, 14). P2X receptors are ligand-gated ion channels that provide extracellular Ca2+ a corridor for cell entry after binding eATP, facilitating a surge in cytosolic [Ca2+] that is essential in activating down-stream signaling. P2Y receptors transduce the eATP signal by marshalling heteromeric G-proteins on the cytosolic face of the plasma membrane and activating appropriate downstream effectors.Although eATP exists in plants, homologous P2X/P2Y receptors for eATP signal perception have not yet been identified, even in plant species with fully sequenced genomes. Notwithstanding the obscurity of plant eATP signal sensors, some of the key downstream messengers recruited by eATP-mediated signaling are known. For example, eATP triggers a surge in cytosolic Ca2+ concentration (1517) and a heightened production of nitric oxide (1820) and reactive oxygen species (17, 21, 22). Altering eATP levels is attended by activation of plant gene expression (16, 21) and changes in protein abundance (5, 23), indicating that eATP-mediated signaling impacts on plant physiology. Indeed eATP has been demonstrated to regulate plant growth (20, 2426), gravitropic responses (27), xenobiotic resistance (4), plant-symbiont interactions (28), and plant-pathogen interactions (23, 29). However, the mechanism by which eATP regulates these processes remains unclear, largely because the eATP signal sensors and downstream signal regulatory genes and proteins have not been identified.We previously reported that eATP plays a central regulatory role in plant cell death processes (5). Therefore, an understanding of the signaling components galvanized by eATP in cell death regulation might serve a useful purpose in providing mechanistic detail of how eATP signals in plant physiological processes. We found that eATP-mediated signaling negatively regulates cell death as its removal by application of ATP-degrading enzymes to the apoplast activates plant cell death (5). Remarkably, fumonisin B1 (FB1), a pathogen-derived molecule that activates defense gene expression in Arabidopsis (30), commandeers this eATP-regulated signaling to trigger programmed cell death (5). FB1 is a mycotoxin secreted by fungi in the genus Fusarium and initiates programmed cell death in both animal and plant cells (31, 32). In Arabidopsis, FB1 inaugurates cell death by inactivating eATP-mediated signaling via triggering a drastic collapse in the levels of eATP (5). FB1-induced Arabidopsis programmed cell death is dependent on the plant signaling hormone salicylic acid (33), which is a key regulator of eATP levels (29). Because concurrent application of FB1 and exogenous ATP to remedy the FB1-induced eATP deficit blocks death, FB1 and exogenous ATP treatments can therefore be used as probes to identify the key signal regulators downstream of eATP in cell death control. This is vital for achieving the global objective of elucidating the mechanism of eATP signaling in plant physiology.Gel-based proteomic analyses have been previously applied to successfully identify the novel role of eATP in the regulation of plant defense gene expression and disease resistance (23, 29). We have now employed FB1 and ATP treatments together with two-dimensional difference in-gel electrophoresis (DIGE) and matrix-assisted laser desorption-time of flight MS (MALDI-TOF MS) to identify the changes in Arabidopsis protein profiles associated with a shift from normal to cell death-inception metabolism. Additional reverse genetic analyses enabled us to definitively identify a putative ATP synthase β-subunit as a target for eATP-mediated signaling with an unexpected function in the regulation of plant programmed cell death.  相似文献   

8.
The genetic regulation of programmed cell death (PCD) is well characterized in animal systems, but largely unresolved in plants. This research was designed to identify plant genes that can suppress PCD triggered in plants by Fumonisin B1 (FB1). Agrobacterium rhizogenes was used to transform individual members of a cDNA library into tomato roots, which were then screened for resistance to FB1. Cellular changes elicited during FB1-induced PCD include chromatin condensation, fragmentation into pycnotic DNA bodies, TUNEL positive reactions, ROS accumulation, and eventual loss of membrane integrity. Several cDNA library members collectively overexpressed in a transformed root population revealed PCD suppressive action and were recovered by PCR. One of the FB1 suppressive genes was homologous to metallothionein, and shared sequence homology to the animal ortholog reported to suppress PCD through interference with formation or activity of reactive oxygen species (ROS). The metallothionein recovered in this screen suppressed ROS accumulation in FB1-treated roots and prevented symptoms of PCD. Anti-PCD genes recovered by this screen represent potential sources of resistance to PCD-dependent plant diseases, while the screen should be useful to identify genes capable of suppressing PCD triggered by other effectors, including those expressed by root pathogens during infection.  相似文献   

9.
Some compatible pathogens secrete toxins to induce host cell death and promote their growth. The toxin-induced cell death is a pathogen strategy for infection. To clarify the executioner of the toxin-induced cell death, we examined a fungal toxin (fumonisin B1 (FB1))-induced cell death of Arabidopsis plants. FB1-induced cell death was accompanied with disruption of vacuolar membrane followed by lesion formation. The features of FB1-induced cell death were completely abolished in the Arabidopsis vacuolar processing enzyme (VPE)-null mutant, which lacks all four VPE genes of the genome. Interestingly, an inhibitor of caspase-1 abolished FB1-induced lesion formation, as did a VPE inhibitor. The VPE-null mutant had no detectable activities of caspase-1 or VPE in the FB1-treated leaves, although wild-type leaves had the caspase-1 and VPE activities, both of which were inhibited by a caspase-1 inhibitor. gammaVPE is the most essential among the four VPE homologues for FB1-induced cell death in Arabidopsis leaves. Recombinant gammaVPE recognized a VPE substrate with Km = 30.3 microm and a caspase-1 substrate with Km = 44.2 microm, which is comparable with the values for mammalian caspase-1. The gammaVPE precursor was self-catalytically converted into the mature form exhibiting caspase-1 activity. These in vivo and in vitro analyses demonstrate that gammaVPE is the proteinase that exhibits a caspase-1 activity. We show that VPE exhibiting a caspase-1 activity is a key molecule in toxin-induced cell death. Our findings suggest that a susceptible response of toxin-induced cell death is caused by the VPE-mediated vacuolar mechanism similar to a resistance response of hypersensitive cell death (Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004) Science 305, 855-858).  相似文献   

10.
Amongst the many stimuli orienting the growth of plant roots, of critical importance are the touch signals generated as roots explore the mechanically complex soil environment. However, the molecular mechanisms behind these sensory events remain poorly defined. We report an impaired obstacle-avoiding response of roots in Arabidopsis lacking a heterotrimeric G-protein. Obstacle avoidance may utilize a touch-induced release of ATP to the extracellular space. While sequential touch stimulation revealed a strong refractory period for ATP release in response to mechano-stimulation in wild-type plants, the refractory period in mutants was attenuated, resulting in extracellular ATP accumulation. We propose that ATP acts as an extracellular signal released by mechano-stimulation and that the G-protein complex is needed for fine-tuning this response.  相似文献   

11.
Extracellular ATP is a regulator of pathogen defence in plants   总被引:2,自引:0,他引:2  
In healthy plants extracellular ATP (eATP) regulates the balance between cell viability and death. Here we show an unexpected critical regulatory role of eATP in disease resistance and defensive signalling. In tobacco, enzymatic depletion of eATP or competition with non-hydrolysable ATP analogues induced pathogenesis-related ( PR ) gene expression and enhanced resistance to tobacco mosaic virus and Pseudomonas syringae pv. tabaci . Artificially increasing eATP concentrations triggered a drop in levels of the important defensive signal chemical salicylic acid (SA) and compromised basal resistance to viral and bacterial infection. Inoculating tobacco leaf tissues with bacterial pathogens capable of activating PR gene expression triggered a rapid decline in eATP. Conversely, inoculations with mutant bacteria unable to induce defence gene expression failed to deplete eATP. Furthermore, a collapse in eATP concentration immediately preceded PR gene induction by SA. Our study reveals a previously unsuspected role for eATP as a negative regulator of defensive signal transduction and demonstrates its importance as a key signal integrating defence and cell viability in plants.  相似文献   

12.
水杨酸(SA)是植物重要的信号分子,低浓度的SA能够诱导植物的抗病反应,而高浓度的SA导致植物细胞死亡。本文采用500μmol·L-1的SA处理烟草悬浮细胞BY-2,研究了细胞外ATP在SA诱导的细胞死亡中的作用及可能的机制。结果显示,外源ATP可缓解SA诱导的细胞死亡水平的上升。另外,SA导致NADPH氧化酶活性下降,而外源ATP则刺激其活性上升。外源ATP能缓解SA对NADPH氧化酶活性的抑制,且这种缓解作用可被NADPH氧化酶的抑制剂——二亚苯基碘(DPI)所消除。DPI还可部分消除外源ATP对SA所诱导的细胞死亡的缓解作用。上述结果表明,胞外ATP通过刺激NADPH氧化酶活性缓解SA诱导的细胞死亡。  相似文献   

13.
The physical law of diffusion imposes O2 concentration gradients from the plasma membrane to the center of the cell. The present study was undertaken to determine how such intracellular radial gradients of O2 affect the fate of isolated single cardiomyocytes. In single rat cardiomyocytes, mitochondrial respiration was moderately elevated by an oxidative phosphorylation uncoupler to augment the intracellular O2 gradient. At physiological extracellular O2 levels (2-5%), decreases in myoglobin O2 saturation and increases in NADH fluorescence at the center of the cell were imaged (anoxic cell core) while the mitochondrial membrane potential (DeltaPsim) and ATP levels at the anoxic cell core were relatively sustained. In contrast, treatment with 0.5 mM iodoacetamide (IA) to inhibit creatine kinase (CK) resulted in depletion of both DeltaPsim and ATP at the anoxic cell core. Even at normal extracellular Po2, actively respiring cardiomyocytes developed rigor contracture followed by necrotic cell death. Furthermore, such rigor was remarkably accelerated by IA, whereas cell injury was perfectly rescued by mitochondrial F1Fo inhibition by oligomycin. These results suggest that increases in radial gradients of O2 potentially promote cell death through the reverse action of F1Fo in mitochondria located at the anoxic cell core. However, in the intact cardiomyocyte, the CK-mediated energy flux from the subsarcolemmal space may sustain DeltaPsim at the cell core, thus avoiding uncontrolled consumption of ATP that can lead to necrotic cell death. Mitochondria at the anoxic core can cause necrotic cell death in cardiomyocytes at physiological extracellular Po2.  相似文献   

14.
Stone JM  Heard JE  Asai T  Ausubel FM 《The Plant cell》2000,12(10):1811-1822
Fumonisin B1 (FB1), a programmed cell death-eliciting toxin produced by the necrotrophic fungal plant pathogen Fusarium moniliforme, was used to simulate pathogen infection in Arabidopsis. Plants infiltrated with 10 microM FB1 and seedlings transferred to agar media containing 1 microM FB1 develop lesions reminiscent of the hypersensitive response, including generation of reactive oxygen intermediates, deposition of phenolic compounds and callose, accumulation of phytoalexin, and expression of pathogenesis-related (PR) genes. Arabidopsis FB1-resistant (fbr) mutants were selected directly by sowing seeds on agar containing 1 microM FB1, on which wild-type seedlings fail to develop. Two mutants chosen for further analyses, fbr1 and fbr2, had altered PR gene expression in response to FB1. fbr1 and fbr2 do not exhibit differential resistance to the avirulent bacterial pathogen Pseudomonas syringae pv maculicola (ES4326) expressing the avirulence gene avrRpt2 but do display enhanced resistance to a virulent isogenic strain that lacks the avirulence gene. Our results demonstrate the utility of FB1 for high-throughput isolation of Arabidopsis defense-related mutants and suggest that pathogen-elicited programmed cell death of host cells may be an important feature of compatible plant-pathogen interactions.  相似文献   

15.
《Autophagy》2013,9(8):1206-1207
Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets. However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants. Intriguingly, HR triggered by another class of immune receptors with different genetic requirements is not compromised, indicating that only a specific subset of immune receptors engage the autophagy pathway for HR execution. Thus, our work provides a primary example of autophagic cell death associated with innate immune responses in eukaryotes as well as of pro-death functions for the autophagy pathway in plants.  相似文献   

16.
Complex signalling systems have evolved in multicellular organisms to enable cell-to-cell communication during growth and development. In plants, cell communication via the extracellular matrix (apoplast) controls many processes vital for plant survival. Secretion of ATP into the extracellular matrix is now recognised as a previously unknown stimulus for cell signalling with a role in many aspects of plant physiology. In the last decade, the secondary messenger molecules in extracellular ATP signalling were identified, but the downstream gene and protein networks that underpin plant responses to extracellular ATP are only beginning to be characterised. Here we review the current status of our knowledge of plant extracellular signalling and demonstrate how applying state-of-the art proteomic technologies is rapidly bringing new discoveries in extracellular ATP research. We discuss how monitoring of the global proteomic profile during responses to modulation of extracellular ATP signalling has led to novel insight into pathogen defence systems and plant programmed cell death regulation. On the basis of extensive proteomic, pharmacological, and reverse genetics data, extracellular ATP has been confirmed to constitute an important molecular switch that tightly controls organellar energy metabolism, reprogramming of primary metabolic pathways, and redirection of resources to protein networks that support adaptation of plants to stress.  相似文献   

17.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

18.
S R Kristensen  M H?rder 《Enzyme》1989,41(4):209-216
Release of enzymes from human fibroblasts, as a result of either ATP depletion caused by metabolic inhibitors or a direct cell membrane damage, was increased in the absence of extracellular Ca2+. The lack of extracellular Mg2+ resulted only in a small nonsignificant increase of enzyme release during ATP depletion. However, in a Ca2+-free medium the enzyme release was very much enhanced during ATP depletion if Mg2+ was absent concomitantly. The data show that extracellular calcium protects the cells from cell damage, and that the presence of extracellular magnesium in a calcium-free medium protects the cell against energy-dependent cell damage.  相似文献   

19.

Fumonisin B1 (FB1) is a harmful mycotoxin produced by Fusarium species, which results in oxidative stress leading to cell death in plants. FB1 perturbs the metabolism of sphingolipids and causes growth and yield reduction. This study was conducted to assess the role of ethylene in the production and metabolism of reactive oxygen species in the leaves of wild type (WT) and ethylene receptor mutant Never ripe (Nr) tomato and to elucidate the FB1-induced phytotoxic effects on the photosynthetic activity and antioxidant mechanisms triggered by FB1 stress. FB1 exposure resulted in significant ethylene emission in a concentration-dependent manner in both genotypes. Moreover, FB1 significantly affected the photosynthetic parameters of PSII and PSI and activated photoprotective mechanisms, such as non-photochemical quenching in both genotypes, especially under 10 µM FB1 concentration. Further, the net photosynthetic rate and stomatal conductance were significantly reduced in both genotypes in a FB1 dose-dependent manner. Interestingly, lipid peroxidation and loss of cell viability were also more pronounced in WT as compared to Nr leaves indicating the role of ethylene in cell death induction in the leaves. Thus, FB1-induced oxidative stress affected the working efficiency of PSI and PSII in both tomato genotypes. However, ethylene-dependent antioxidant enzymatic defense mechanisms were activated by FB1 and showed significantly elevated levels of superoxide dismutase (18.6%), ascorbate peroxidase (129.1%), and glutathione S-transferase activities (66.62%) in Nr mutants as compared to WT tomato plants confirming the role of ethylene in the regulation of cell death and defense mechanisms under the mycotoxin exposure.

  相似文献   

20.
Fumonisin B1 (FB1) and Alternaria alternate f. sp. lycopersici (AAL)‐toxin are classified as sphinganine analog mycotoxins (SAMTs), which induce programmed cell death (PCD) in plants and pose health threat to humans who consume the contaminated crop products. Herein, Fumonisin B1 Resistant41 (FBR41), a dominant mutant allele, was identified by map‐based cloning of Arabidopsis FB1‐resistant mutant fbr41, then ectopically expressed in AAL‐toxin sensitive tomato (Solanum lycopersicum) cultivar. FBR41‐overexpressing tomato plants exhibited less severe cell death phenotype upon AAL‐toxin treatment. Analysis of free sphingoid bases showed that both fbr41 and FBR41‐overexpressing tomato plants accumulated less sphinganine and phytosphingosine upon FB1 and AAL‐toxin treatment, respectively. Alternaria stem canker is a disease caused by AAL and responsible for severe economic losses in tomato production, and FBR41‐overexpressing tomato plants exhibited enhanced resistance to AAL with decreased fungal biomass and less cell death, which was accompanied by attenuated accumulation of free sphingoid bases and jasmonate (JA). Taken together, our results indicate that FBR41 is potential in inhibiting SAMT‐induced PCD and controlling Alternaria stem canker in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号