首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
通过盆栽试验研究了土壤易矿化有机态氮和土壤微生物态氮与土壤净矿化氮及植物吸氮量之间的关系。结果表明,种植前土壤易矿化有机态氮和土壤微生物态氮以及种植前后土壤易矿化有机态氮的变化量均与土壤氮素净矿化量和植物吸氮量之间存在显著的相关性。在盆栽试验条件下,土壤易矿化有机态氮和种植前土壤微生物态氮能够较好地反映土壤氮素的矿化和供应能力,可以作为土壤氮素的生物有效性指标。  相似文献   

2.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

3.
氮循环浅析   总被引:3,自引:0,他引:3  
1 氮循环自然界中的氮素物质以 3种形式存在 ,即 :有机态氮 :据估计 ,地球上蕴藏的有机态氮至少有 2 0 0~ 2 50亿 t;无机态氮 :铵盐、硝酸盐 ,约为有机态氮总量的 1% ;分子态氮 :空气中大约 79%是氮气 ,整个大气层中的含氮量是极其巨大的。其中含量特别多的有机态氮和分子态氮 ,植物都不能直接利用。但是在自然界 ,通过微生物及人类的生产活动 ,以上 3种氮素物质可以相互转化。所谓氮循环就是指氮气、无机氮化合物、有机氮化合物在自然界中相互转化过程的总称 ,包括氨化作用、硝化作用、反硝化作用、固氮作用以及有机氮化合物的合成等。氮…  相似文献   

4.
植物吸收利用有机氮营养研究进展   总被引:4,自引:0,他引:4  
植物矿质营养学问世以后,人们一直认为无机氮是植物吸收氮素的主要形态.随着研究手段的改进和研究内容的不断深入,现已证实许多没有菌根的维管植物都可以直接吸收可溶性有机氮,特别是小分子的氨基酸.由此引起了人们对植物有机营养、植物营养方式多样化问题的重视.研究表明:氨基酸可以通过多种方式释放到土壤溶液中,土壤中的氨基酸主要来源于微生物、动植物及其代谢产物等.土壤氨基酸含量受土壤温湿度、所施的有机肥料、生长的植物种类及其生长发育时期的影响.植物对氨基酸的吸收是一个主动吸收过程,受载体调节,并与能量状况有关,同时受介质中pH和温度的影响.但是有关植物吸收氨基酸的机理及其生态过程还需进行深入的研究.  相似文献   

5.
土壤微生物量氮含量、矿化特性及其供氮作用   总被引:36,自引:3,他引:33  
周建斌  陈竹君  李生秀 《生态学报》2001,21(10):1718-1725
论述了土壤中微生物体氮的含量及其影响因素,土壤微生物量氮的矿化特性及其与土壤矿化氮间的关系,土壤微生物量氮含量与土壤供氮指标间的关系等。提出研究不同生态系统中土壤微生物量氮的含量及其变化规律,不同耕作栽培措施对土壤微生物量氮含量的影响。土壤微生物量在土壤氮素保持和释放中的作用,土壤微生物量氮的转化率与其供氮量间的关系;土壤微生物量氮与作物氮素吸收间的关系等,是土壤微生物量氮方面应重点研究的问题。  相似文献   

6.
土壤微生物生物量氮及其在氮素循环中作用   总被引:11,自引:0,他引:11  
简述了土壤微生物生物量氮的含量及其影响因素,阐述了其在土壤氮素循环中的重要作用,着重讨论了其与可矿化氮、矿质氮、有机氮和固定态铵之间的关系,指出土壤微生物生物量氮与供氮因子间的关系在氮素循环研究中有非常重要的作用,可为调控土壤氮素的供应状况,减少氮素损失,提高氮肥利用率提供科学依据,并提出了需要深入研究的问题。  相似文献   

7.
土壤可溶性有机氮是土壤氮素的重要组成部分, 也是氮循环过程中最活跃的因子之一。土壤可溶性有机氮不仅可以直接被植物吸收利用, 也可以被土壤微生物利用。土壤可溶性有机氮可以随土壤水分向下迁移造成农业面源污染等环境问题, 所以引起众多研究者关注。从土壤可溶性有机氮的含量、土壤可溶性有机氮的来源和成分、土壤可溶性有机氮的迁移特征以及土壤可溶性有机氮的影响因素几个方面的研究进展进行综述, 最后对未来土壤可溶性有机氮研究方向进行了展望。  相似文献   

8.
采用盆栽试验,研究了有机无机肥配施对麦-稻轮作系统中水稻氮素累积动态和土壤氮素供应动态的影响,并从微生物学角度探讨了有机无机肥协同提高水稻氮肥利用率的机制.结果表明:有机无机肥配施处理的土壤微生物生物量碳、氮和矿质态氮在水稻分蘖期前低于化肥处理,而在抽穗期至灌浆期显著高于其他处理.土壤氮素供应动态与水稻吸收利用氮素规律吻合程度最高,促进了水稻产量、生物量和氮素累积量的增加,显著提高了水稻的氮肥利用率.其主要机制是有机无机肥配施促进了土壤微生物繁殖,使其在水稻生育前期固持了较多的矿质氮,在水稻生育中、后期这些氮素逐渐被释放以供水稻吸收利用,较好地满足了水稻各阶段生长发育对氮素养分的需求.  相似文献   

9.
以黄土高原南部17年长期定位试验不同处理土壤为研究对象,研究了不同肥料处理及撂荒条件下土壤氮素矿化特性、灭菌与不灭菌条件下不同肥力土壤对施入外源硝态氮转化的影响.结果表明:氮磷钾化肥和有机肥配施(MNPK)及长期撂荒处理显著提高了土壤有机质和全氮含量以及土壤氮素矿化量和矿化率;氮磷钾化肥(NPK)处理虽然提高了土壤无机氮含量,但对土壤有机质、全氮、土壤氮素矿化量和矿化率的影响相对较小.高温高压灭菌显著增加了土壤铵态氮含量,但对不同处理土壤硝态氮含量无明显影响;在灭菌土壤培养过程中,土壤铵态氮含量呈显著增加趋势.同一土壤类型,不论灭菌与否,培养过程中施入土壤的硝态氮含量保持相对稳定,说明在本研究培养条件下,生物因素和非生物因素对外源硝态氮在土壤中的转化无明显影响.  相似文献   

10.
氮磷添加对内蒙古温带典型草原净氮矿化的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
氮素矿化是决定土壤供氮能力的重要生态过程,也是目前国内外土壤氮循环研究的重点。养分添加在调节土壤的氮转化方面起着重要的作用。该文以内蒙古锡林河流域温带典型草原为研究对象,通过不同水平的氮(N)和磷(P)养分添加实验,利用树脂芯原位培养法分析研究不同水平施氮、施磷对生长季草地土壤氮矿化的影响。结果表明:高氮处理对草地土壤硝态氮(NO3--N)、铵态氮(NH4+-N)及无机氮都有明显的影响,其中25 g N·m-2·a-1和10 g N·m-2·a-1高氮处理显著提高了无机氮含量,25 g N·m-2·a-1高氮处理显著增加土壤的NO3--N及NH4+-N含量。与施氮相比,施磷处理对土壤NO3--N、NH4+-N及无机氮的影响较为有限,只有12.5 g P2O5·m–2·a–1的磷处理显著促进了NO3--N及无机氮含量。高氮处理对草地土壤氮素转化有明显影响,其中25 g N·m-2·a-1高氮处理对净硝化速率、氨化速率及矿化速率都有显著的促进作用,说明高梯度的施氮处理有利于提高土壤的供氮能力。氮是内蒙古锡林河流域草原生态系统有机氮矿化的限制因子。与施氮相比,施磷处理对草地土壤氮转化的作用较为有限,仅有12.5 g P2O5·m–2·a–1+2 g N·m-2·a-1处理显著促进生长季中期的净氨化速率。说明施磷对土壤氮转化的影响弱于施氮的影响。养分添加显著提高了草地的地上生物量。养分添加情景下,土壤湿度与净矿化速率极显著相关,表明湿度是影响该区域温带草原土壤氮矿化的主效因素。环境因子(如有机碳含量、土壤全氮及土壤C/N)与不同氮处理下的净矿化速率之间显著相关,而土壤微生物碳、氮含量与土壤氮矿化均没有显著相关性。  相似文献   

11.
森林土壤氮素可利用性的影响因素研究综述   总被引:18,自引:0,他引:18  
近几十年来 ,人类对木材、纤维和其他森林资源需求的急剧增加 ,对森林的集约化经营管理成为必然趋势。由于大部分森林生态系统缺乏N素 ,因此施肥成为经济有效的途径。但是 ,由于森林中的N肥利用效率低于农业系统 ,且N肥生产成本较高 ,易造成环境中多余N素的污染 ,所以需要更有效的经营管理方法。要改进这类方法 ,则必须很好地理解全球各种森林生态系统的N素循环和N素可利用性[3 1] 。可利用性养分 (availablenutrient)是指土壤中易被植物吸收同化的养分元素或化合物的数量[4 0 ] ,可以理解为植物利用土壤中易吸收和…  相似文献   

12.
干扰对典型草原生态系统土壤净呼吸特征的影响   总被引:1,自引:0,他引:1  
由于土地利用格局的改变和人类干扰活动的加剧,草地生态系统CO2排放与固定的平衡、碳循环特征以及碳储量越来越受到人们的重视。尤其是定量区分土壤净呼吸与土壤总呼吸量之间的比例关系,以及定量描述草地生态系统碳循环过程等方面的研究尚不够完善。以河北沽源的典型草原为研究对象,测定了火烧、灌溉、施肥、刈割干扰下的天然草地土壤净呼吸变化动态及其与主要控制因素之间的关系。结果表明:不同处理土壤净呼吸均表现出明显的季节性变化规律,变化趋势基本一致。火烧、灌溉和刈割处理分别比对照的土壤净呼吸通量降低了28.93%、16.25%和36.82%。土壤温度、土壤湿度与土壤净呼吸通量呈指数相关(P0.01)。对地上生物量、地下生物量、土壤有机碳含量和土壤全氮含量与土壤净呼吸之间进行逐步回归分析表明,土壤有机碳含量(SC)和土壤全氮含量(SN)是土壤净呼吸通量的主要影响因素。  相似文献   

13.
Douglas A. Frank 《Oikos》2008,117(4):591-601
Although the link between the nitrogen (N): phosphorus (P) stoichiometry of biota and availability has received considerable attention in aquatic systems, there has been relatively little effort to compare the elemental composition of biota and supply in terrestrial habitats. In this study, I explored the effects of a prominent topo-edaphic gradient, from dry hilltop to wet slope-base, and native ungulates on N and P of soils, plants, and rates of in situ net mineralization in grasslands of Yellowstone National Park. Nitrogen and P measurements were made May–September, 2000, in paired, grazed and 38–42 year fenced, ungrazed grassland at five topographically variable sites. Similar to findings from other grassland ecosystems, several site factors associated with organic activity, including soil moisture, C, and plant biomass, covaried with soil N concentration and/or net N mineralization. Soil P concentration and net P mineralization, however, were unrelated to those factors. Instead, net P mineralization was negatively related to soil pH, which is known to control the form of inorganic P and its availability, and soil P was uncorrelated with any soil or plant variable measured in the study. Because of being influenced by different soil properties, N and P net mineralization were unrelated among grasslands. Furthermore, supply and plant N:P ratios were uncorrelated in this grassland system. Based on critical N:P ratios reflecting nutritional limitation of plants, Yellowstone grassland vegetation ranged from being N limited to N-P co-limited. Grazers increased N-P co-limitation by enhancing plant N concentrations and the soil pH gradient across grassland sites regulated plant nutritional limitation by affecting plant-available P. These findings showed how ungulates and a landscape factor, i.e. soil pH, determined plant nutrient status among YNP grasslands differently by influencing plant N concentration versus plant P concentration, respectively.  相似文献   

14.
Water pulses and biogeochemical cycles in arid and semiarid ecosystems   总被引:45,自引:0,他引:45  
The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The inverse texture hypothesis for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season, decoupling resource supply and microbial and plant demand, and resulting in increased losses via other pathways and reduction in overall soil nutrient pools. The asynchrony of resource availability, particularly nitrogen versus water due to pulsed water events, may be central to understanding the consequences for ecosystem nutrient retention and long-term effects on carbon and nutrient pools. Finally, global change effects due to changes in the nature and size of pulsed water events and increased asynchrony of water availability and growing season will likely have impacts on biogeochemical cycling in water-limited ecosystems.  相似文献   

15.
Organic carbon (C) and nitrogen (N) are essential for heterotrophic soil microorganisms, and their bioavailability strongly influences ecosystem C and N cycling. We show here that the natural 15N abundance of the soil microbial biomass is affected by both the availability of C and N and ecosystem N processing. Microbial 15N enrichment correlated negatively with the C : N ratio of the soil soluble fraction and positively with net N mineralization for ecosystems spanning semiarid, temperate and tropical climates, grassland and forests, and over four million years of ecosystem development. In addition, during soil incubation, large increases in microbial 15N enrichment corresponded to high net N mineralization rates. These results support the idea that the N isotope composition of an organism is determined by the balance between N assimilation and dissimilation. Thus, 15N enrichment of the soil microbial biomass integrates the effects of C and N availability on microbial metabolism and ecosystem processes.  相似文献   

16.
内蒙古典型草原放牧压力评价及土壤N储量响应   总被引:1,自引:0,他引:1  
李瑞华  李晓兵  王宏  邓飞  李旭 《生态学报》2016,36(3):758-768
放牧是草原生态系统的重要干扰,是草原氮循环的重要影响因素。为了揭示放牧对土壤N储量的影响,在内蒙古典型草原,基于单位草原面积草原载畜量和单位草原生产力,建立了放牧压力评价模型,并利用1990—2011年以县为单位统计的放牧牲畜数据和2001—2011每年合成的MODIS-NDVI_(max)影像数据评估了放牧压力的空间分布。基于2011年野外调查的95个样点和2010年调查的41个样点数据,对处于低放牧压力(LG),中放牧压力(MG)和高放牧压力(HG)的样点数据进行了统计分析。结果表明:放牧压力对土壤容重(BD),土壤全碳(TC)含量和土壤全氮(TN)含量具有显著影响,特别在土壤表层(0—10cm),土壤容重、TC含量和TN含量在LG,MG和HG之间存在显著差异。TC含量和TN含量随放牧压力增加而降低,BD随放牧压力增加而增加;黏粒含量(CC)在3个放牧压力梯度上不存在显著差异;土壤N储量表现出和TN含量相似的变化特征,随土壤深度增加而降低,随放牧压力增加而减少,在0—50cm范围内,土壤N储量在LG、MG和HG之间存在显著差异(2011,P0.05;2010,P0.1)。重度放牧是草原生态系统氮损失的主要因素之一,降低放牧压力有助于降低草原氮损失和恢复植被生产力。  相似文献   

17.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

18.
《农业工程》2021,41(4):341-345
Plant litter is dead, above and below ground; organic material i.e. leaves barks, needles, twigs and roots. Plant litter plays a key role in nutrient cycling and community organization in grassland ecosystems. Litter can have important consequences on recruitment of plant species through modification of biological, physical, and chemical features of microenvironment. Plant litter offers a major input of organic matter to the soil which modifies soil chemistry, hence impacts nutrient cycling. At early stages of litter decomposition, a particular amount of carbon is transporting to the soil nutrient pool. In terrestrial ecosystems, plant litter regulating biogeochemical cycles, maintain soil fertility, nutrient availability, and therefore influence plant growth, diversity, composition, structure, and productivity. Litter can also impact plant above net plant productivity and below net plant productivity in grassland ecosystem. Plant litter accumulation and decomposition can impact plant species composition and community structure through temperature, light and nutrient availability. The effects of plant litter on vegetation may be negative, positive or neutral due vegetation variability, study duration, habitat, latitude, quantity and quality of litter. These diverse effects of plant litter on grassland ecosystem might be due to, management practice type, management intensity, climate type, timing, precipitation and soil nutrient pool etc. Current review attempts to describe prominent effects of plant litter on vegetation, seed germination, soil fertility, Productivity, species composition, community structure and mechanism in grassland ecosystem.  相似文献   

19.
Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of local extinction of rare plant species, encouragement of exotic plant species, disturbance of nutrient balance in plant organs, and increase of herbivory in plant communities. On the ecosystem scale, excess bioavailable N induces forest decline, disturbance of nutrient cycling within ecosystems, depending on vegetation, soil, land-use, and N-loading history. These Nr risks will increase in the Asian region, where impacts of Nr in natural terrestrial ecosystems have been scarcely studied. Whether much of the terrestrial ecosystems on a global level are in the sate of N saturation or not is still controversial, but the potential risks of excess Nr seem to be increasing. The fundamental ways to mitigate Nr risks are to reduce Nr production, prevent Nr translocation, and promote conversion of Nr to N2. Temporal, but promising actions against ecological N risks may include management of forests and riparian zones, and carbon addition in grassland.  相似文献   

20.
Nutrient dynamics of large grassland ecosystems possessing abundant migratory grazers are poorly understood. We examined N cycling on the northern winter range of Yellowstone National Park, home for large herds of free-roaming elk (Cervus elaphus) and bison (Bison bison). Plant and soil N, net N mineralization, and the deposition of ungulate fecal-N were measured at five sites, a ridgetop, mid-slope bench, steep slope, valley-bottom bench, and riparian area, within a watershed from May, 1991 to April, 1992.Results indicated similarities between biogeochemical properties of Yellowstone grassland and other grassland ecosystems: (1) landscape position and soil water affected nutrient dynamics, (2) annual mineralization was positively related to soil N content, and (3) the proportion of soil N mineralized during the year was negatively related to soil C/N.Grazers were a particularly important component of the N budget of this grassland. Estimated rates of N flow from ungulates to the soil ranged from 8.1 to 45.6 kg/ha/yr at the sites (average = 27.0 kg/ha/yr), approximately 4.5 times the amount of N in senescent plants. Rates of nitrogen mineralization for Yellowstone northern range grassland were higher than those measured in other temperate grassland ecosystems, possibly due to grazers promoting N cycling in Yellowstone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号