首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

2.
Hairy root lines through the infection of Agrobacterium rhizogenes strain (A4) were established from shoot tips and leaves of Rehmannia glutinosa Libosch. Ten lines of hairy roots were selected on the basis of biomass increase in half-strength Gamborg medium (1/2 B5). Transgenic status of the roots was confirmed by polymerase chain reaction using rolB and rolC specific primers. Iridoid glycosides (catalposide, loganin, aucubin and catalpol) and phenylethanoid glycosides (verbascoside and isoverbascoside) identified using HPLC?CESI?CMS, and their contents were compared with untransformed root culture and roots of 1-year-old field-grown plants of R. glutinosa by RP-HPLC. The growth and production of secondary metabolites in ten hairy root lines varied considerably as to the media. Woody plant (WP) medium displayed higher growth in terms of fresh (FW) and dry weights (DW) compared to 1/2 B5 medium. High-yielding hairy root lines produced higher amounts of loganin, catalposide, verbascoside and isoverbascoside in comparison to the untransformed root culture and roots of 1-year-old field-grown plants. The highest amounts of catalposide and loganin in transformed roots were 4.45?mg?g?1 DW (RS-2 hairy root line) and 4.66?mg?g?1 DW (RS-1 hairy root line), respectively. Aucubin and catalpol were detected in some lines in trace amounts. The highest amounts of verbascoside (16.9?mg?g?1 DW) and isoverbascoside (3.46?mg?g?1 DW) were achieved in RS-2 root line. The contents of catalposide, verbascoside and isoverbascoside in high-producing lines were several times higher than in untransformed root culture and roots of R. glutinosa plants grown in soil. Loganin and aucubin could not be detected in roots of field-grown plants. However, the levels of catalpol were much lower in the in vitro roots.  相似文献   

3.

Background

Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking.

Methodology/Principal Findings

We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations.

Conclusions/Significance

Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms.  相似文献   

4.
Tao Sun  Zijun Mao  Yingying Han 《Plant and Soil》2013,368(1-2):445-458

Background and aims

Nitrate leaching from intensively cropped soils represents a huge environmental problem. In order to diversify the range of nitrogen management strategies, this investigation is focused on the effects of ribwort plantain, Plantago lanceolata L., and its allelochemicals on soil N mineralization.

Methods

High-performance liquid chromatography was used in this study for phytochemical analysis of the major allelochemicals aucubin, catalpol, and verbascoside. Soil incubation experiments demonstrated a significant suppression of soil N mineralization caused by the incorporation of the iridoid glycoside (IG) aucubin, leaf material of two varieties (P. lanceolata cv. Libor and cv. Arterner), and an aqueous extract of P. lanceolata leaves.

Results

Throughout the growing season, the two varieties conspicuously differed in aucubin and verbascoside contents as well as in leaf dry weight. In soil incubation experiments, incorporated leaf material of both varieties affected long-term low soil nitrate concentrations. Experimental aucubin application resulted in an inhibitory effect on soil N mineralization. This was not true for the IG catalpol. Furthermore, we observed a negative relationship between IG concentrations and inorganic soil nitrogen concentrations when the soil was incubated with aqueous P. lanceolata leaf extract of different concentrations.

Conclusion

This study enforced the hypothesis that allelochemicals of P. lanceolata have an active role in a suppression effect on soil N mineralization. Further research may be necessary to investigate the specific effects of P. lanceolata allelochemicals on the nitrogen cycle.  相似文献   

5.
Summary We investigated the effects of genotype, habitat, and seasonal variation on production of the iridoid glycosides, aucubin and catalpol, in leaves of the common weed Plantago lanceolata. Two genotypes, one each from a lawn and an adjacent abandoned hayfield population, were clonally replicated in the greenhouse, and then planted back into the two habitats. One quarter of the plants from each treatment were harvested on each of four dates, at approximately two-week intervals. Over the course of the growing season, and in both habitats, we found a significant increase in the concentration of both aucubin and catalpol in P. lanceolata leaves. The genotypes differed in their response to environmental variation, both in time and between sites, as indicated by significant genotype x date and genotype x site interactions. Early in the season, habitat (lawn or field) had a greater effect on iridoid glycoside concentration than did plant genotype, but later in the season, plant genotype was more influential in determining the iridoid glycoside concentration. Thus, the relative palatability of Plantago genotypes to specialist and generalist herbivores may vary in time and space.  相似文献   

6.
A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers'' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of different species richness and functional composition.  相似文献   

7.
In plant-insect herbivore field studies, effects of cages, plant age, and mechanical clipping on host plant chemistry are often postulated but not well documented. We examined the effects of cages (for the purpose of restraining insects on experimental plots), plant age over the course of the experiment and mechanical clipping on plantain (Plantago lanceolata) chemistry. Leaf age affected the concentrations of nitrogen and iridoid glycosides (IGs; specifically aucubin and catalpol), with higher levels in newer leaves. Caged plants had higher levels of IGs and lower concentrations of nitrogen than uncaged plants. The IG concentrations were greater in new leaves of caged plants than uncaged plants, whereas the concentrations in mature leaves were unaffected by caging. Plants that were 5 weeks older had higher levels of IGs and lower nitrogen than plants harvested 5 weeks earlier. Comparison of three studies suggested that over the summer IG concentrations increase during dry years but decrease during wet years. Plants with above-ground parts clipped and then allowed to regrow for five weeks had similar concentrations of IGs and nitrogen compared to control plants; but the regrowth plants had a lower catalpol to total IG ratio. We conclude that cages and time can have significant positive effects on iridoid glycoside concentrations and significant negative effects on leaf nitrogen concentration. But our results also indicate that the direction and magnitude of the effects of cages, time and mechanical damage are not easily predicted. Therefore, it is advisable to determine and/or control for such effects in field experiments on plant-insect interactions.  相似文献   

8.
Plants are simultaneously attacked by a multitude of herbivores that affect plant responses and plant-mediated interactions in a variety of ways. So far, studies on indirect interactions between below- and aboveground herbivores have almost exclusively focused on interactions between only one root and one shoot herbivore species at the same time. Since these studies show a variety of outcomes, we test the hypothesis that root herbivore identity matters in below-/aboveground interactions. We studied the combined effects root-feeding nematodes (Pratylenchus penetrans) and wireworms (Agriotes lineatus larvae) on Plantago lanceolata and on the performance of aboveground phloem-feeding aphids (Myzus persicae) and chewing caterpillars (Chrysodeixis chalcites larvae). Since root herbivores may also affect resource availability and the microbial community in the rhizosphere, we examined resource utilization by soil microorganisms using BIOLOG EcoPlates™.

Wireworms decreased root biomass by 13%, but led to compensatory shoot growth. Nematodes and the aboveground herbivores did not affect the biomass of Plantago lanceolata. Feeding by C. chalcites larvae enhanced the concentration of aucubin in leaves, which might explain the high mortality of the caterpillars. Aphids and the belowground herbivores did not change iridoid glycoside levels in the leaves. However, the number of aphid offspring was reduced by 44% when nematodes had been added to the soil, whereas wireworms had no effect. We observed higher utilization of BIOLOG carbon sources by the soil microorganisms only in the presence of Pratylenchus penetrans. Our results suggest that the outcome of below–aboveground interactions highly depends on herbivore identity.  相似文献   


9.
1. A glycoside of the aucubin type has been isolated in crystalline form from Plantago and Buddleia species, and has been shown to be identical with catalpol (Lunn, Edward & Edward, 1962). Catalpol has not been found in the free state before, but occurs as its p-hydroxybenzoyl ester, catalposide, in the genus Catalpa. 2. A second glycoside of this type has been obtained in crystalline form from Buddleia, and has been shown to be a mono-O-methyl derivative of catalpol, for which the name `methylcatalpol' is proposed. 3. Both Plantago and Buddleia species are known to contain aucubin. The concentrations of this glycoside and catalpol are comparable in Plantago. In Buddleia methylcatalpol predominates somewhat over catalpol. Yields of the individual glycosides were about 0·1% of the fresh weight of the leaves. 4. Bobbitt, Spiggle, Mahboob, Philipsborn & Schmid (1962) have suggested structures for catalposide and catalpol based on chemical and physical evidence, in particular on n.m.r. spectra. Reappraisal of this evidence and additional measurements have now confirmed these structures and show that the Buddleia glycoside is the 6-O-methyl derivative of catalpol.  相似文献   

10.
Diet of herbivorous insects can influence both the herbivores and their natural enemies. We examined the direct and indirect effects of diet on the interactions between the polyphagous herbivore Trichoplusia ni Hübner (Lepidoptera: Noctuidae) and its polyembryonic parasitoid Copidosoma floridanum Ashmead (Hymenoptera: Encyrtidae). To determine how host plant species and host plant iridoid glycoside content affect host caterpillars and their parasitoids, parasitized and unparasitized T. ni were given leaves of either Plantago lanceolata L., which contains the iridoid glycosides aucubin and catalpol, Plantago major L. (Plantaginaceae), which contains only aucubin, or Taraxacum officinale F.H. Wigg (Asteraceae), which contains neither. Survival of unparasitized T. ni was much lower when fed P. major compared with the other two host plants, whereas pupae were smallest when fed T. officinale and developed most slowly when fed P. lanceolata as larvae. Neither aucubin nor catalpol were detected in intact Plantago‐fed T. ni larvae or their hemolymph, and only trace amounts of aucubin were detected in frass, suggesting that these compounds are mostly metabolized in the midgut and are not encountered by the parasitoid. Copidosoma floridanum clutch size was almost doubled when reared from P. lanceolata‐fed T. ni compared with T. officinale‐fed larvae and tripled compared with P. major‐fed larvae, although the percent of parasitoids surviving to adulthood was uniformly high regardless of host diet. The observed variation in C. floridanum fitness among host diets is likely mediated by the effect of the diets on host quality, which in turn may be influenced more by other factors in the host plants than their iridoid glycoside profiles. Interactions between plant metabolites, generalist herbivores like T. ni, and their parasitoids may be predominantly indirect.  相似文献   

11.
Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground–belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground–belowground interactions.  相似文献   

12.

Aims

Plants with precise root foraging patterns can proliferate roots preferentially in nutrient-rich soil patches. When nutrients are distributed heterogeneously, this trait is often competitively advantageous in pot experiments but not field experiments. We hypothesized that this difference is due to belowground herbivory under field conditions.

Methods

We performed pot experiments using seedlings of Lolium perenne (a more precise root foraging species) and Plantago lanceolata (a less precise root foraging species). The experiment had a two-way factorial randomized block design, with nutrient distribution pattern (homogeneous or heterogeneous) and belowground herbivore (present or absent) as the two factors. Each pot contained one seedling of each species.

Results

With no herbivore present, plant biomass was smaller in the heterogeneous nutrient treatment than in the homogeneous treatment in P. lanceolata, but not in L. perenne. Under homogeneous nutrient distribution, plant biomass was lower in both species with a herbivore present than with no herbivore. Under heterogeneous nutrient distribution, biomass reduction due to herbivory occurred only in L. perenne.

Conclusions

Roots of the precise root foraging species were grazed more under the heterogeneous nutrient distribution, suggesting that the herbivore more efficiently foraged for roots in nutrient-rich soil patches.  相似文献   

13.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

14.
This paper gives the first reports on aphid effects on rhizosphere organisms as influenced by soil nutrient status and plant development. Barley plants grown in pots fertilized with N but without P (N), with N and P (NP), or not fertilized (0) were sampled in the early growth phase (day 25), 1 week before and 1 week after spike emergence. Aphids were added 16 days before sampling was carried out. In a separate experiment belowground respiration was measured on N and NP fertilized plant–soil systems with aphid treatments comparable to the first experiment. Aphids reduced numbers of rhizosphere bacteria and fungal feeding nematodes 1 week before spike emergence. Before spike emergence, aphids reduced belowground respiration in NP treatments. These findings strongly indicate that aphids reduced allocation of photoassimilates to roots and deposition of root exudates in the growth phase of the plant. Contrary to this, 1 week after spike emergence numbers of bacteria, fungal feeding nematodes and Protozoa were higher in rhizospheres of plants subjected to aphids probably because aphids enhanced root mortality and root decomposition. Protozoa and bacterial feeding nematodes were stimulated at different experimental conditions with nematodes being the dominant bacterial grazers at N fertilization and Protozoa in the NP treatment before spike emergence.  相似文献   

15.
We investigated how shoot and root allocation in plants responds to increasing levels of competitive stress at different levels of soil fertility. In addition, we analyzed whether different responses were due to adaptive plasticity or should be attributed to ontogenetic drift. Plantago lanceolata plants were grown during 18 weeks at five plant densities and four nutrient supply levels in pots in the greenhouse. Thereafter root and shoot biomass was measured. There were clear negative effects of increasing plant densities on plant weights revealing strong intraspecific competition. At the lower N-treatments, the proportional allocation to root mass increased with increasing competitive stress, indicating the important role of belowground competition. At the higher N-supply rate, the relationship between competitive stress and shoot to root ratio was neutral. These responses could not be attributed to ontogenetic drift, but could only be explained by assuming adaptive plasticity. It was concluded that at lower N-supplies belowground competition dominates and leads to increased allocation to roots, while at the higher N-supply competition for soil resources and light had balanced impacts on shoot and root allocation. An alternative hypothesis explaining the observed pattern is that light competition has far less pronounced impacts on root–shoot allocation than nutrient deprival.  相似文献   

16.
Plant parasitic nematodes have developed the capacity to sense and respond to chemical signals of host origin and the ability to orientate towards plant roots enhances the nematode's chance of survival. Root exudates contain a range of compounds which mediate belowground interactions with pathogenic and beneficial soil organisms. Chemical components of root exudates may deter one organism while attracting another and these compounds alter nematode behaviour and can either attract nematodes to the roots or result in repellence, motility inhibition or even death. In vitro, plant signals present in root exudates, trigger a rapid alteration of the surface cuticle of Meloidogyne incognita and the same changes were also induced by indole-acetic acid (IAA). IAA binds to the chemosensory organs of M. incognito and it is possible that IAA acts as a signal that orientates the nematode on the root surface in the rhizosphere and/or inside the root tissue and thereby promotes nematode infection.  相似文献   

17.
Caffeoyl-catalpol, isoferuloyl-catalpol, protocatechuoyl-catalpol, benzoyl-catalpol, p-hydroxybenzoyl catalpol (catalposide), vanilloyl-catalpol and cinnamoyl-aucubin have been isolated from several Veronica species (Scrophulariaceae) in a more or less pure state. The first four compounds have never been recorded in plants before. A PC survey of forty-three species of the genus sensu lato has shown a general presence of aucubin and catalpol. They are accompanied in many of the species by a complex mixture of esters, especially esters of catalpol with aromatic acids. In only one species have aucubin esters been found. Loganin has been identified in five species, this being the first time that this compound has been found in the Scrophulariaceae. Loganin is accompanied by unidentified loganin esters in the same five species. From the systematic point of view the complex mixtures of esters of catalpol in Veronica seem to be noteworthy. Species of Globularia, Erinus, Scrophularia Verbascum, Wulfenia, Catalpa and Plantago investigated either totally lacked ester glucosides in leaves or contained mainly different types of esters. The possible systematic meaning of these results is briefly discussed.  相似文献   

18.
为探讨并分析栽培与野生化血丹植株中不同部位中两种化学成分的含量差异,该研究采用超声法提取、高效液相色谱法(HPLC)测定栽培与野生化血丹根、茎、叶、花、混合样等部位中桃叶珊瑚苷和梓醇的含量,并进行比较。结果表明:(1)桃叶珊瑚苷在栽培与野生化血丹植株内均有分布,含量均以根中最高,其在栽培与野生化血丹植株内的含量表现分别为根叶混合样茎花、根混合样茎花叶,栽培化血丹不同部位中桃叶珊瑚苷的含量均高于野生化血丹。(2)梓醇在栽培化血丹的茎中未检出,在栽培与野生化血丹其他部位均有分布,含量均以叶中最高,其在栽培与野生化血丹植株内的含量分别表现为叶花混合样根、叶混合样茎花根,野生化血丹不同部位中梓醇的含量均高于栽培化血丹。(3)桃叶珊瑚苷和梓醇在栽培和野生化血丹植株不同部位中的含量均存在显著差异(P0.05),栽培与野生同一部位间总体上无显著差异,为该濒危药用植物资源药用部位选择和合理开发利用提供实验参考。  相似文献   

19.
Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants—Holcus lanatus, Plantago lanceolata and Lotus corniculatus—in soils into which 15N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.  相似文献   

20.
How roots detect and respond to the presence of neighbors is relevant to understand plant belowground interactions. The aim of the present work was to evaluate the effect of the presence of neighboring plants and the limited availability of phosphorus on root architecture. A target plant of Arabidopsis thaliana (Ler or Col) was surrounded by combinations of two individuals (Ler and Col), and subjected to different growth conditions (levels of activated charcoal (AC) and phosphorus). Both accessions consistently concentrated their roots towards the competition zone shared with a neighbor of the same accession, avoiding the side shared with the other accession. All these competition strategies disappeared when plants were limited by phosphorus or when activated charcoal was added to the growth media. Plants produced consistently fewer but longer lateral roots when activated charcoal was added to the growth media irrespective of the neighbors. Our results indicate a direct role of secondary metabolites present in the root exudates and phosphorus availability in the response of presence and identity of neighboring roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号