首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bradyrhizobium japonicum possesses three soluble c-type cytochromes, c550, c552, and c555. The genes for cytochromes c552 (cycB) and c555 (cycC) were characterized previously. Here we report the cloning, sequencing, and mutational analysis of the cytochrome c550 gene (cycA). A B. japonicum mutant with an insertion in cycA failed to synthesize a 12-kDa c-type cytochrome. This protein was detectable in the cycA mutant complemented with cloned cycA, which proves that it is the cycA gene product. The cycA mutant, a cycB-cycC double mutant, and a cycA-cycB-cycC triple mutant elicited N2-fixing root nodules on soybean (Nod+ Fix+ phenotype); hence, none of these three cytochromes c is essential for respiration supporting symbiotic N2 fixation. However, cytochrome c550, in contrast to cytochromes c552 and c555, was shown to be essential for anaerobic growth of B. japonicum, using nitrate as the terminal electron acceptor.  相似文献   

2.
Three soluble, low molecular mass cytochromes c (Mr 8000-15,000) were isolated and purified from soybean root nodule bacteroids of Bradyrhizobium japonicum strain CC705. On the basis of their alpha: absorbance peaks in the reduced forms, they were named cytochromes c550, c552 and c555. Cytochrome c552 reacted very fast, c555 very slowly and c550 not at all with carbon monoxide. The complete amino acid sequence (73 residues) of cytochrome c552 was established which identifies it as a monoheme, class I cytochrome c with some remote similarity to the cytochrome c6 family.  相似文献   

3.
The periplasmically located cytochrome c553i of Paracoccus denitrificans was purified from cells grown aerobically on choline as the carbon source. The purified protein was digested with trypsin to obtain several protein fragments. The N-terminal regions of these fragments were sequenced. On the basis of one of these sequences, a mix of 17-mer oligonucleotides was synthesized. By using this mix as a probe, the structural gene encoding cytochrome c553i (cycB) was isolated. The nucleotide sequence of this gene was determined from a genomic bank. The N-terminal region of the deduced amino acid sequence showed characteristics of a signal sequence. Based on the deduced amino acid sequence of the mature protein, the calculated molecular weight is 22,427. The gene encoding cytochrome c553i was mutated by insertion of a kanamycin resistance gene. As a consequence of the mutation, cytochrome c553i was absent from the periplasmic protein fraction. The mutation in cycB resulted in a decreased maximum specific growth rate on methanol, while the molecular growth yield was not affected. Growth on methylamine or succinate was not affected at all. Upstream of cycB the 3' part of an open reading frame (ORF1) was identified. The deduced amino acid sequence of this part of ORF1 showed homology with methanol dehydrogenases from P. denitrificans and Methylobacterium extorquens AM1. In addition, it showed homology with other quinoproteins like alcohol dehydrogenase from Acetobacter aceti and glucose dehydrogenase from both Acinetobacter calcoaceticus and Escherichia coli. Immediately downstream from cycB, the 5' part of another open reading frame (ORF2) was found. The deduced amino acid sequence of this part of ORF2 showed homology with the moxJ gene products from P. denitrificans and M. extorquens AM1.  相似文献   

4.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

5.
Further genetic evidence is provided here that Bradyrhizobium japonicum possesses a mitochondria-like electron-transport pathway: 2[H]----UQ----bc1----c----aa3----O2. Two Tn5-induced mutants, COX122 and COX132, having cytochrome c oxidase-negative phenotypes, were obtained and characterized. Mutant COX122 was defective in a novel gene, named cycM, which was responsible for the synthesis of a c-type cytochrome with an Mr of 20,000 (20K). This 20K cytochrome c appeared to catalyse electron transport from the cytochrome bc1 complex to the aa3-type terminal oxidase and, unlike mitochondrial cytochrome c, was membrane-bound in B. japonicum. The Tn5 insertion of mutant COX132 was localized in coxA, the structural gene for subunit I of cytochrome aa3. This finding also led to the cloning and sequencing of the corresponding wild-type coxA gene that encoded a 541-amino-acid protein with a predicted Mr of 59,247. The CoxA protein shared about 60% sequence identity with the cytochrome aa3 subunit I of mitochondria. The B. japonicum cycM and coxA mutants were able to fix nitrogen in symbiosis with soybean (Fix+). In contrast, mutants described previously which lacked the bc1 complex did not develop into endosymbiotic bacteroids and were thus Fix-. The data suggest that a symbiosis-specific respiratory chain exists in B. japonicum in which the electrons branch off at the bc1 complex.  相似文献   

6.
7.
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed.  相似文献   

8.
Cytochrome c(m552) (cyt c(m552)) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c(554). By amino acid sequence alignment of the core tetraheme domain, cyt c(m552) belongs to the NapC/TorC family of tetra- or pentaheme cytochrome c species involved in electron transport from membrane quinols to a variety of periplasmic electron shuttles leading to terminal reductases. However, cyt c(m552) is thought to reduce quinone with electrons originating from HAO. In this work, the tetrahemic 27 kDa cyt c(m552) from N. europaea was purified after extraction from membranes using Triton X-100 with subsequent exchange into n-dodecyl beta-d-maltoside. The cytochrome had a propensity to form strong SDS-resistant dimers likely mediated by a conserved GXXXG motif present in the putative transmembrane segment. Optical spectra of the ferric protein contained a broad ligand-metal charge transfer band at approximately 625 nm indicative of a high-spin heme. Mossbauer spectroscopy of the reduced (57)Fe-enriched protein revealed the presence of high-spin and low-spin hemes in a 1:3 ratio. Multimode EPR spectroscopy of the native state showed signals from an electronically interacting high-spin/low-spin pair of hemes. Upon partial reduction, a typical high-spin heme EPR signal was observed. No EPR signals were observed from the other two low-spin hemes, indicating an electronic interaction between these hemes as well. UV-vis absorption data indicate that CO (ferrous enzyme) or CN(-) (ferric or ferrous enzyme) bound to more than one and possibly all hemes. Other anionic ligands did not bind. The four ferrous hemes of the cytochrome were rapidly oxidized in the presence of oxygen. Comparative modeling, based on the crystal structure and conserved residues of the homologous NrfH protein from Desulfovibrio of cyt c(m552), predicted some structural elements, including a Met-ligated high-spin heme in a quinone-binding pocket, and likely axial ligands to all four hemes.  相似文献   

9.
We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli-compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 A resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629-644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli.  相似文献   

10.
M Bott  D Ritz    H Hennecke 《Journal of bacteriology》1991,173(21):6766-6772
Mitochondrial cytochrome c is a water-soluble protein in the intermembrane space which catalyzes electron transfer from the cytochrome bc1 complex to the terminal oxidase cytochrome aa3. In Bradyrhizobium japonicum, a gene (cycM) which apparently encodes a membrane-anchored homolog of mitochondrial cytochrome c was discovered. The apoprotein deduced from the nucleotide sequence of the cycM gene consists of 184 amino acids with a calculated Mr of 19,098 and an isoelectric point of 8.35. At the N-terminal end (positions 9 to 31), there was a strongly hydrophobic domain which, by forming a transmembrane helix, could serve first as a transport signal and then as a membrane anchor. The rest of the protein was hydrophilic and, starting at position 72, shared about 50% sequence identity with mitochondrial cytochrome c. The heme-binding-site motif Cys-Gly-Ala-Cys-His was located at positions 84 to 88. A B. japonicum cycM insertion mutant (COX122) exhibited an oxidase-negative phenotype and apparently lacked cytochrome aa3 in addition to the CycM protein. The wild-type phenotype with respect to all characteristics tested was restored by providing the cycM gene in trans. The data supported the conclusion that the assembly of cytochrome aa3 depended on the prior incorporation of the CycM protein in the cytoplasmic membrane.  相似文献   

11.
Abstract Three membrane-bound acid-stable cytochromes c with molecular masses of 46, 30 and 21 kDa were characterized from a new Thiobacillus ferrooxidans strain. They were solubilized with high concentrations of dodecylmaltoside at pH 8. The 30 kDa cytochrome c was purified to a homogeneous state as established by SDS-PAGE analysis. It showed an absorption peak at 410 nm in the oxidized form and at 418, 523 and 552 nm in the reduced form. The 46 kDa cytochrome c co-purified with a non-heme protein of 36 kDa. The amino acid composition and the N-terminal amino acid sequence of the 46 kDa cytochrome c were determined and compared with those of the soluble 14 kDa and the membrane-bound 21, 22.3 and 68 kDa cytochromes c isolated from two different strains. The results clearly show that this cytochrome is distinct from both the 22.3, 21 and 14 kDa cytochrome species, and exhibits some similarities with the 68 kDa cytochrome c as regards its amino acid composition.  相似文献   

12.
The major soluble c-type cytochromes in cultured cells of Bradyrhizobium japonicum USDA 110 comprised a CO-reactive c555 (Mr, approximately 15,500) and a non-CO-reactive c550 (Mr, approximately 12,500). Levels of cytochrome per gram of soluble protein in aerobic, anaerobic, and symbiotic cells were 32, 21, and 30 nmol, respectively, for c555 and 31, 44, and 65 nmol, respectively, for c550. The midpoint redox potentials (Em,7) of the purified cytochromes were +236 mV for c555 and +277 mV for c550. The CO reactivity of c555 was pH dependent, with maximal reactivity at pH 10 or greater. Rabbit antiserum was produced against purified c555 and used to screen a B. japonicum USDA 110 genomic DNA expression library in lambda gt11 for a downstream portion of the c555 gene (cycC). This sequence was then used to probe a cosmid library for the entire c555 locus. The nucleotide sequence shows an open reading frame of 149 amino acids, with an apparent signal sequence at the N terminus and a heme-binding site near the C terminus. The deduced amino acid sequence is similar to those of the cytochromes c556 of Rhodopseudomonas palustris and Agrobacterium tumefaciens. The cycC gene was mutagenized by insertion of a kanamycin resistance cassette and homologously recombined into the B. japonicum genome. The resulting mutant made no c555 but made normal amounts of c550. The levels of membrane cytochromes were unaffected. The mutant and wild type exhibited identical phenotypes when used to nodulate plants of soybean (Glycine max L. Merr.), with no significant differences in nodule number, nodule mass, or total amount of N2 fixed.  相似文献   

13.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

14.
Soluble cytochrome c-552 was purified from Thiobacillus ferrooxidans to an electrophoretically homogeneous state. The cytochrome showed absorption peaks at 276, 411 and 523 nm in the oxidized form and peaks at 315, 417, 523 and 552 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 13,800 on the basis of the amino acid composition and heme content, and 14,000 from SDS-polyacrylamide gel electrophoresis analysis. Its midpoint redox potential at pH 7.0 was determined to be +0.36 V. The N-terminal amino acid sequence of the cytochrome was determined as follows: A-G-G-A-G-G-P-A-P-Y-R-I-S-?-D-?-M-V-?-S-G-M-P-G-. Ferrocytochrome c-552 was oxidized by the membrane fraction of T. ferrooxidans, and the oxidation rate was more rapid at pH 3.0 than at pH 6.5. Ferricytochrome c-552 was reduced by Fe(II)-cytochrome c oxidoreductase with Fe2+ at pH 3.5, while horse ferricytochrome c was not reduced by the enzyme under the same reaction conditions.  相似文献   

15.
The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely.The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit.The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.  相似文献   

16.
The cycB2 gene encoding the soluble cytochrome c555s from Aquifex aeolicus, an hyperthermophilic organism, has been cloned and expressed using Escherichia coli as the host organism. The cytochrome was successfully produced in the periplasm of an E. coli strain coexpressing the ccmABCDEFGH genes involved in the cytochrome c maturation process. Comparison of native and recombinant cytochrome c555s shows that both proteins are indistinguishable in terms of spectroscopic and physicochemical properties. Since two different methionine residues are present in the sequence stretch usually providing the sixth ligand to the heme iron, site-directed mutagenesis has been performed in order to identify the methionine serving as the axial ligand. Two single mutations were introduced, leading to the replacement of each methionine by a histidine residue. Characterization of both mutants, M78H and M84H cytochromes c555s, using biochemical and biophysical techniques has been carried out. The M84H mutant exhibits spectral features identical to those of native cytochrome. Its redox midpoint potential is decreased by 40 mV. By contrast, substitution of methionine 78 by a histidine residue strongly alters the structural and physicochemical properties of the molecule which exhibits characteristics of His/His iron coordination type rather than His/Met. These results allow us to identify methionine 78 as the sixth ligand of cytochrome c555s heme iron. Preliminary results on the thermostability of the native and mutant cytochromes c555 are also reported.  相似文献   

17.
Cytochrome c-552 from Euglena gracilis was purified and the amino acid sequence determined. The protein is a single peptide chain of 87 residues with the haem prosthetic group bound through two thioether linkages to two cysteine residues near the amino-terminal region. The amino acid sequence shows some similarities to mitochondrial cytochrome c and to two prokaryote c-type cytochromes. The sequence, taken with the known characteristics of cytochrome c-552, indicates that it is an f-type cytochrome. The possible functional and evolutionary significance of these features in common is discussed. Detailed evidence for the amino acid sequence of Euglena cytochrome f has been deposited as Supplementary Publication SUP 50027 at the British Library, Lending Division (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7QB, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.  相似文献   

18.
The complete amino acid sequence of cytochrome c-552 from an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6 (IAM 12695), was determined. It is a single polypeptide chain of 80 residues, and its molecular weight, including heme, was calculated to be 7,599. The sequence of cytochrome c-552 from H. thermophilus TK-6 closely resembles that of cytochromes c-551 from Pseudomonas species. Moreover, the tertiary structure of Hydrogenobacter cytochrome c-552 is suggested to be similar to that of cytochrome c-551 from Pseudomonas aeruginosa. The sequence similarity between Hydrogenobacter cytochrome c-552 and that of other bacteria physiologically related to H. thermophilus is not high.  相似文献   

19.
We have isolated a cDNA clone for the Chlamydomonas reinhardtii pre-apoplastocyanin. The sequence contains codons for the complete pre-protein including a two-domain, lumen-targeting transit sequence and the mature apoprotein. The transit sequence (47 amino acids) is the shortest one described for chloroplast lumenal proteins, and like other C. reinhardtii lumen-targeting transit sequences appears to lack an uncharged amino-terminal domain usually present in plant lumen-directing sequences. The mature protein is deduced to be 98 amino acids in length and shows highest primary sequence similarity (74-76% identity) to other unicellular algal plastocyanins. Southern hybridization analysis of C. reinhardtii genomic DNA indicates the presence of a single nuclear gene, as is the case for all other plastocyanin genes characterized to date, although the algal gene might be interrupted. Codon usage in this gene reflects the high GC content of C. reinhardtii nuclear DNA, but is more highly biased than that found in the C. reinhardtii copper-repressible gene for the functionally equivalent pre-apocytochrome c552 (perhaps contributing to the more efficient synthesis in vivo of plastocyanin over cytochrome c552). The deduced physical properties of this plastocyanin are compared to those of the C. reinhardtii plastidic cytochrome c552.  相似文献   

20.
By using synthetic oligonucleotides, the gene encoding soluble cytochrome c550 was isolated from a genomic bank of Paracoccus denitrificans. The nucleotide sequence of the gene was determined, and the deduced amino acid sequence of the mature protein was found to be similar to the primary structure of purified cytochrome c550 except for the presence of seven additional amino acid residues at the C terminus. At the N terminus of the primary structure was found an additional stretch of 19 amino acid residues that had the typical features of the signal sequence of the cytochrome. Comparison of the nucleotide sequences of the upstream regions of the P. denitrificans cytochrome c550 gene and bc1 operon revealed three regions with a distinct organization that showed strong similarity. Downstream of the c550 gene was found part of another gene, the deduced amino acid sequence of which showed strong homology with subunit 1 of the cytochrome aa3 oxidase. For gene replacement experiments, the suicide vector pGRPd1 was constructed. The cytochrome c550 gene was inactivated by insertion of a kanamycin resistance gene, and the mutated gene was cloned into this vector. Recombination with the wild-type gene resulted in a mutant strain with an inactivated cytochrome gene. Isolated mutant strains were unable to synthesize the soluble cytochrome, as judged by spectrum analysis and analysis of periplasmic proteins by gel electrophoresis and heme staining. The mutation resulted in a 14% decrease in the growth yield during aerobic heterotrophic growth and in a 40% decrease in the maximum specific growth rate during growth on methylamine. Furthermore, a longer lag phase was observed under both growth conditions. The mutation had no effect on growth yield, maximum specific growth rate, and duration of the lag phase during anaerobic growth in the presence of nitrate. In addition, there was no accumulation of nitrite and nitrous oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号