首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
涡鞭毛虫(甲藻)着丝粒/动粒蛋白的检查   总被引:4,自引:4,他引:0  
利用ACA血清、抗人着丝粒蛋白B的单抗和多抗、抗CHO细胞动粒蛋白的单抗,对典型涡鞭毛虫隐沟虫(隐甲藻)(Crypthecodiniumcohnii)和特殊涡鞭毛虫尖尾虫(尖尾藻)(Oxyrrhismarina)的着丝粒/动粒蛋白进行了检查。用ACA血清作的荧光观察表明,隐沟虫的这些蛋白虽结合在核骨架上,但在间期时并不形成点状的前着丝粒。免疫印迹检查表明两种涡鞭毛虫的着丝粒蛋白B彼此一致,而且与四膜虫和眼虫的也高度一致。但用ACA血清作免疫印迹检查时,尖尾虫的蛋白虽与四膜虫和眼虫的相近,与隐沟虫的却有极大的差异。以抗动粒蛋白的单抗作此种检查时,尖尾虫与眼虫的反应带相同,而隐沟虫则与源真核生物(Archezoa)贾第虫(Giardialamblia)的相同;而且隐沟虫和贾第虫都与几种原细菌有两条相同的反应带,其中50kD的一条是尖尾虫和眼虫都没有的。上述发现不仅从一个新的方面支持了认为应把尖尾虫从典型涡鞭毛虫分出来独立为一个门的主张(李靖炎,1990),而且指出典型涡鞭毛虫在后真核生物(Metakaryota)中间是非常原始的。  相似文献   

2.
源真核生物蓝氏贾第虫核分裂的初步观察   总被引:9,自引:2,他引:7  
贾第虫属于源真核生物(Archezoa)中的双滴虫门,是目前所知的最低等的真核生物。本工作首次对蓝氏贾第虫(Giardlialambla)的核分裂作了初步的电镜观察,未能在分裂着的核中见到纺锤体或纺锤体微管。以0.1—20μg/ml浓度的秋水仙素作实验,其核分裂也不受阻抑。以抗微管蛋白的多抗作免疫荧光检查,也未见分裂着的核中有微管蛋白。这似乎意味着其核分裂方式乃是前有丝分裂性质的。对此进行了讨论。  相似文献   

3.
李靖炎 《动物学研究》1996,17(3):287-289
根据本实验室对贾第虫(Giardia)细胞核的观察、研究,并参阅有关文献及电镜照片报道,发现双滴虫类的细胞核有两个极原始的特征:1)还没有进化出核仁;2)核被膜尚不完整。它们在核分裂方面也是极原始的。据此,作者建议把Cavalier—Smith(1989)提出的源真核生物(Archezoa)超界中的源真核生物界划分为两个界,即以双滴虫门为代表的前源真核生物(Proarchezoa)界和包含目前所知的其他源真核生物的后源真核生物(Metarchezoa)界。  相似文献   

4.
目前国际上的着丝粒蛋白研究工作几乎全是以酵母和高等生物为材料进行的,为了从起源与进化的角度考察着丝粒蛋白。我们以人喉癌培养细胞HepII作为对照材料,以两种ACA血清和CENP-B单抗,多抗以及CHO动粒蛋白单抗为探针,用间接免疫荧光和免疫印迹技术对嗜热四膜虫作检查,免疫荧光结果表明,HepII细胞的着丝粒抗原间期核中呈点状分布;与HepII细胞的不同,嗜热四膜虫的着丝粒抗原在间期核中的分布不规则  相似文献   

5.
为探讨贾第虫细胞核内核糖体合成系统,及与典型的真核生物有何差异,首先,确定在典型真核生物中参与核糖体合成的129条共有的保守蛋白,然后用这些蛋白搜索贾第虫基因组以调查它们在贾第虫中的直系同源蛋白的情况,以对贾第虫的核糖体合成系统作一了解。结果表明:贾第虫具有89条这些蛋白的直系同源蛋白,包括参与rRNA甲基化和假尿嘧啶化的蛋白复合体成员,以及存在于90S、40S和60S复合体中的蛋白。贾第虫的核糖体合成系统与典型的真核生物相似,但还有40条蛋白在贾第虫基因组中找不到同源蛋白。这意味着贾第虫的核糖体合成系统较典型的真核生物简单。贾第虫虽然没有核仁结构,但其核糖体亚基合成的途径和机制可能与真核细胞相似,参与的成分不同于无核仁结构的原核生物,可能相对简单。  相似文献   

6.
人类染色体着丝粒蛋白研究进展   总被引:1,自引:0,他引:1  
人类染色体着丝粒蛋白研究进展朱学良(中国科学技术大学生物系合肥230026)1着丝粒、动植和着丝粒一动粒复合体细胞分裂过程中姐妹染色体的均等分离是一切生物赖以生长和繁殖的基础之一。着丝粒(centromere)是染色体位于初缢痕的部分,在光学显微镜下...  相似文献   

7.
法国产夏枯草中的两个新的乌索烷型三萜皂甙   总被引:7,自引:0,他引:7  
从法国产夏枯草(PrunellavulgarisL.)的甲醇提取物中分离得到两个新的乌索烷型三萜皂甙:夏枯草甙(pruvuloside)A和B;同时还分离到5个已知化合物:niga-ichigosideF_2,sericoside,槲皮素(quercetin),槲皮素-3-O-葡荡糖甙(quercetin3-O-glucoside),山奈酚-3-O-葡荡糖甙(kaempferol-3-O-glucoside),及arjunglucosideⅠ和niga-ichigosideF_1的混合物。它们的结构是通过波谱的方法证明的。  相似文献   

8.
用生物素标记的贾第虫全基因组DNA探针,在斑点杂交试验中显示高度的敏感性和特异性。用它可检出10ng贾第虫DA,10^3个贾第虫滋养体或包囊,且不与阴道毛滴虫、溶组织内阿米巴、弓形虫和BABL/c小鼠肝细胞DNA,以及贾第虫患者粪便上清液发生交叉反应。本探针可用于贾第虫病病原体检测和虫株鉴定研究。  相似文献   

9.
本文报道烙铁头(Trimeresurusmucrosquamatus)蛇毒纤维蛋白原溶酶(TMVFg),眼镜王蛇(Ophiophagushannah)蛇毒纤维蛋白原溶酶(ohS1),竹叶青(Trimeresurusstejnegeri)蛇毒专一纤溶酶原激活剂(sv-pA)对5种小分子多肽底物的底物专一性,及这些蛇毒丝氨酸蛋白酶对各种凝血因子(第X因子、凝血酶原、纤溶酶原、蛋白C)的作用,并和其它蛇毒丝氨酸蛋白酶如矛头蝮(Bothropsatrox)蛇毒凝血酶样酶(Batroxobin)、铜头蝮(Agkistrodoncontortrixcontortrix)蛇毒蛋白C激活剂ACC-C、蝰蛇(Viperarusselli)毒第Ⅴ因子激活剂RVV-V进行比较研究。通过酶标偶联免疫反应研究了抗sv-PA抗体与各种丝氨酸蛋白酶的免疫交叉反应,并对蛇毒丝氨酸蛋白酶及相应功能的哺乳动物蛋白酶进行了序列比较分析。从底物专一性多样性及已知序列结构分化上对这一类蛇毒丝氨酸蛋白酶的结构与功能进行了探讨和研究。  相似文献   

10.
贾第虫(Giardia)原始特性的研究进展   总被引:1,自引:0,他引:1  
贾第虫(Giardia)原始特性的研究进展沈剑钊(首都医科大学寄生虫学教研室北京100054)关键词源真核生物,贾第虫,原始特性贾第虫属(Giardia)是一类双核寄生性鞭毛虫,它的宿主可为人、哺乳动物、某些鸟类和两栖类。本虫简单的生活周期共分为两个...  相似文献   

11.
We describe the generation of 11 monoclonal antibodies that bind to the centromere/kinetochore region of human mitotic chromosomes. These antibodies were raised against mitotic chromosome scaffolds and screened for centromere/kinetochore binding by indirect immunofluorescence against purified chromosomes. Immunoblot analyses with these antibodies revealed that all of the antigens are greater than 200 kD and are components of nuclei, chromosomes, and/or chromosome scaffolds. Comparison of the immunolocalization of the antigens with that observed for the centromere-associated protein CENP-B revealed that each of these centromere/kinetochore proteins lies more peripherally to the DNA than does CENP-B. In cells normally progressing through the cell cycle, these antigens displayed four distinct patterns of centromere/kinetochore association, corresponding to a minimum of four novel centromere/kinetochore-associated proteins.  相似文献   

12.
We purified 15,000-fold from HeLa cell nuclear extract the centromere antigen that reacts specifically with the 17-bp sequence, designated previously as CENP-B box, in human centromeric alpha-satellite (alphoid) DNA by a two-step procedure including an oligonucleotide affinity column. The purified protein was identified as the centromere protein B (CENP-B) by its mobility on SDS-PAGE (80 kD), and reactivities to a monoclonal antibody raised to CENP-B (bacterial fusion protein) and to anticentromere sera from patients with autoimmune diseases. Direct binding by CENP-B of the CENP-B box sequence in the alphoid DNA has been proved using the purified CENP-B by DNA mobility-shift assay, Southwestern blotting, and DNase I protection analysis. The binding constant of the antigen to the CENP-B box sequence is 6 x 10(8) M-1. DNA mobility-shift assays indicated that the major complex formed between the CENP-B and the DNA contains two DNA molecules, suggesting the importance of the CENP-B/CENP-B box interaction in organization of higher ordered chromatin structures in the centromere and/or kinetochore. Location of DNA binding and dimerization domains in CENP-B was discussed based on the DNA mobility-shift assays performed with a protein fraction containing intact and partial cleavage products of CENP-B.  相似文献   

13.
CENP-B: a major human centromere protein located beneath the kinetochore   总被引:41,自引:20,他引:21       下载免费PDF全文
The family of three structurally related autoantigens CENP-A (17 kD), CENP-B (80 kD), and CENP-C (140 kD) are the best characterized components of the human centromere, and they have been widely assumed to be components of the kinetochore. Kinetochore components are currently of great interest since this structure, which has long been known to be the site of microtubule attachment to the chromosome, is now believed to be a site of force production for anaphase chromosome movement. In the present study we have mapped the distribution of CENP-B in mitotic chromosomes by immunoelectron microscopy using two monospecific polyclonal antibodies together with a newly developed series of ultra-small 1-nm colloidal gold probes. We were surprised to find that greater than 95% of CENP-B is distributed throughout the centromeric heterochromatin beneath the kinetochore. This strongly supports other emerging evidence that CENP-B is specifically associated with alpha-satellite heterochromatin. Although in certain instances CENP-B can be seen to be concentrated immediately adjacent to the lower surface of the kinetochore, the outer plate remains virtually unlabeled. Similar analysis with a human autoimmune serum that recognizes all three CENP antigens reveals an additional unsuspected feature of kinetochore structure. In addition to recognizing antigens in the centromeric heterochromatin, the autoantiserum recognizes a concentration of antigens lateral to the kinetochore. This difference in staining pattern may reflect the presence of a "collar" of chromatin rich in CENP-C and/or CENP-A encircling the kinetochore plates.  相似文献   

14.
We have used autoantibodies to probe the function of three human centromere proteins in mitosis. These antibodies recognize three human polypeptides in immunoblots: CENP-A (17 kD), CENP-B (80 kD), and CENP-C (140 kD). Purified anticentromere antibodies (ACA-IgG) disrupt mitosis when introduced into tissue culture cells during interphase. We have identified two execution points for antibody inhibition. Antibodies injected into the nucleus greater than or equal to 3 h before mitosis prevent the chromosomes from undergoing normal prometaphase movements in the subsequent mitosis. Antibodies injected in the nucleus during late G2 cause cells to arrest in metaphase. Surprisingly, antibodies introduced subsequent to the beginning of prophase do not block mitosis. These results suggest that the CENP antigens are involved in two essential interphase events that are required for centromere action in mitosis. These may include centromere assembly coordinate with the replication of alpha-satellite DNA at the end of S phase and the structural maturation of the kinetochore that begins at prophase.  相似文献   

15.
We have identified a novel human centromere-associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250-300 kd chromosome scaffold associated protein named CENP-E. In cells progressing through different parts of the cell cycle, the localization of CENP-E differed markedly from that observed for the previously identified centromere proteins CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP-E function is required for the transition from metaphase to anaphase.  相似文献   

16.
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 ?. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.  相似文献   

17.
Recently, human artificial chromosomes featuring functional centromeres have been generated efficiently from naked synthetic alphoid DNA containing CENP-B boxes as a de novo mechanism in a human cultured cell line, but not from the synthetic alphoid DNA only containing mutations within CENP-B boxes, indicating that CENP-B has some functions in assembling centromere/kinetochore components on alphoid DNA. To investigate whether any interactions exist between CENP-B and the other centromere proteins, we screened a cDNA library by yeast two-hybrid analysis. An interaction between CENP-B and CENP-C was detected, and the CENP-C domains required were determined to overlap with three Mif2 homologous regions, which were also revealed to be involved in the CENP-C assembly of centromeres by expression of truncated polypeptides in cultured cells. Overproduction of truncated CENP-B containing no CENP-C interaction domains caused abnormal duplication of CENP-C domains at G2 and cell cycle delay at metaphase. These results suggest that the interaction between CENP-B and CENP-C may be involved in the correct assembly of CENP-C on alphoid DNA. In other words, a possible molecular linkage may exist between one of the kinetochore components and human centromere DNA through CENP-B/CENP-B box interaction.  相似文献   

18.
A codon usage table for the intestinal parasite Giardia lamblia was generated by analysis of the nucleotide sequences of eight genes comprising 3,135 codons. Codon usage revealed a biased use of synonymous codons with a preference for NNC codons (42.1%). The codon usage of G. lamblia more closely resembles that of the prokaryote Halobacterium halobium (correlation coefficient r = 0.73) rather than that of other eukaryotic protozoans, i.e. Trypanosoma brucei (r = 0.434) and Plasmodium falciparum (r = -0.31). These observations are consistent with the view that G. lamblia represents the first line of descent from the ancestral cells that first took on eukaryotic features.  相似文献   

19.
ABSTRACT A codon usage table for the intestinal parasite Giardia lamblia was generated by analysis of the nucleotide sequences of eight genes comprising 3,135 codons. Codon usage revealed a biased use of synonomous codons with a preference for NNC codons (42.1%). The codon usage of G. lamblia more closely resembles that of the prokaryote Halobacterium halobium (correlation coefficient r = 0.73) rather than that of other eukaryotic protozoans, i.e. Trypanosoma brucei ( r = 0.434) and Plasmodium falciparum ( r =–0.31). These observations are consistent with the view that G. lamblia represents the first line of descent from the ancestral cells that first took on eukaryotic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号