首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In northeastern Canada, at the ecotonal limit of the forest tundra and lichen woodland, a rise of the regional water table in the peatland systems was registered since Little Ice Age resulting in increasing pool compartment at the expense of terrestrial surfaces. We hypothesized that, with a mean water table closer to peat surface and higher pool density, these ecosystems would be great CH4 emitters. In summers 2009 and 2010, methane fluxes were measured in a patterned fen located in the northeastern portion of the La Grande river watershed to determine the contribution of the different microforms (lawns, hollows, hummocks, string, pools) to the annual CH4 budget. Mean seasonal CH4 fluxes from terrestrial microforms ranged between 12.9 and 49.4 mg m?2 day?1 in 2009 and 15.4 and 47.3 mg m?2 day?1 in 2010. Pool fluxes (which do not include ebullition fluxes) ranged between 102.6 and 197.6 mg CH4 m?2 day?1 in 2009 and 76.5 and 188.1 mg CH4 m?2 day?1 in 2010. Highest fluxes were measured in microforms with water table closer to peat surface but no significant relationship was observed between water table depth and CH4 fluxes. Spatially weighted CH4 budget demonstrates that, during the growing season, the studied peatland emitted 66 ± 31 in 2009 and 55 ± 26 mg CH4 m?2 day?1 in 2010, 79 % of which is accounted by pool fluxes. In a context where climate projections predict greater precipitations in northeastern Canada, these results indicate that this type of peatlands could contribute to modify the methane balance in the atmosphere.  相似文献   

2.
Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling   总被引:1,自引:0,他引:1  
Globally, peatlands store a large quantity of soil carbon that can be subsequently modified by hydrologic alterations from land-use change and climate change. However, there are many uncertainties in predicting how carbon cycling and greenhouse gas emissions are altered by long-term changes in hydrology. Therefore, the goal of this study was to quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction, which created a wetter area up-gradient of the levee (mean WT was 12.1 cm below the surface), a dry area below the levee (36.8 cm), and an adjacent reference site not affected by the levee (21.6 cm). We found that mean total plant production was greatest in the reference site (311.9 g C m?2 y?1), followed by the dry site (290.5 g C m?2 y?1), and lowest in the wet site (227.1 g C m?2 y?1). Net ecosystem exchange during the growing season was negative for all sites (sink), with the wet site having the greatest sink and the dry site having the lowest sink. Ecosystem respiration increased and CH4 emissions decreased with a decreasing WT level. This research demonstrates that human alteration of peatland WT levels can have long-term (>50 years) consequences on peatland carbon cycling.  相似文献   

3.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

4.
Hot spots of CH4 emissions are a typical feature of pristine peatlands at the microsite and landscape scale. To determine whether rewetting and lake construction in a cutaway peatland would result in the re‐creation of hot spots, we first measured CH4 fluxes over a 2‐year period with static chambers and estimated annual emissions. Second, to assess whether rewetting and lake creation would produce hot spots at the landscape level, we hypothesized a number of alternative land use scenarios for the peatland following the cessation of peat extraction. Using the results from this study and other studies from literature, we calculated the global warming potential (GWP) of each scenario and the respective contribution of CH4. The results showed that hot spots of CH4 fluxes were observed as a consequence of microsite‐specific differences in water table (WT) position and plant productivity. CH4 fluxes were closely related to peat temperature at 10 cm depth and WT position. Annual emissions ranged from 4.3 to 38.8 g CH4 m?2 yr?1 in 2002 and 3.2 to 28.8 g CH4 m?2 yr?1 in 2003. The scenario results suggest that lake creation is likely to result in the re‐creation of a hot spot at the landscape level. However, the transition from cutaway to wetland ecosystem may lead to a reduction in the GWP of the peatland.  相似文献   

5.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

6.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

7.
Northern peatlands constitute a significant source of atmospheric methane (CH4). However, management of undisturbed peatlands, as well as the restoration of disturbed peatlands, will alter the exchange of CH4 with the atmosphere. The aim of this systematic review and meta‐analysis was to collate and analyze published studies to improve our understanding of the factors that control CH4 emissions and the impacts of management on the gas flux from northern (latitude 40° to 70°N) peatlands. The analysis includes a total of 87 studies reporting measurements of CH4 emissions taken at 186 sites covering different countries, peatland types, and management systems. Results show that CH4 emissions from natural northern peatlands are highly variable with a 95% CI of 7.6–15.7 g C m?2 year?1 for the mean and 3.3–6.3 g C m?2 year?1 for the median. The overall annual average (mean ± SD) is 12 ± 21 g C m?2 year?1 with the highest emissions from fen ecosystems. Methane emissions from natural peatlands are mainly controlled by water table (WT) depth, plant community composition, and soil pH. Although mean annual air temperature is not a good predictor of CH4 emissions by itself, the interaction between temperature, plant community cover, WT depth, and soil pH is important. According to short‐term forecasts of climate change, these complex interactions will be the main determinant of CH4 emissions from northern peatlands. Drainage significantly (p < .05) reduces CH4 emissions to the atmosphere, on average by 84%. Restoration of drained peatlands by rewetting or vegetation/rewetting increases CH4 emissions on average by 46% compared to the original premanagement CH4 fluxes. However, to fully evaluate the net effect of management practice on the greenhouse gas balance from high latitude peatlands, both net ecosystem exchange (NEE) and carbon exports need to be considered.  相似文献   

8.
Under the warmer climate, predicted for the future, northern peatlands are expected to become drier. This drying will lower the water table and likely result in reduced emissions of methane (CH4) from these ecosystems. However, the prediction of declining CH4 fluxes does not consider the potential effects of ecological succession, particularly the invasion of sedges into currently wet sites (open water pools, low lawns). The goal of this study was to characterize the relationship between the presence of sedges in peatlands and CH4 efflux under natural conditions and under a climate change simulation (drained peatland). Methane fluxes, gross ecosystem production, and dissolved pore water CH4 concentrations were measured and a vegetation survey was conducted in a natural and drained peatland near St. Charles-de-Bellechasse, Quebec, Canada, in the summer of 2003. Each peatland also had plots where the sedges had been removed by clipping. Sedges were larger, more dominant, and more productive at the drained peatland site. The natural peatland had higher CH4 fluxes than the drained peatland, indicating that drainage was a significant control on CH4 flux. Methane flux was higher from plots with sedges than from plots where sedges had been removed at the natural peatland site, whereas the opposite case was observed at the drained peatland site. These results suggest that CH4 flux was enhanced by sedges at the natural peatland site and attenuated by sedges at the drained peatland site. However, the attenuation of CH4 flux due to sedges at the drained site was reduced in wetter periods. This finding suggests that CH4 flux could be decreased in the event of climate warming due to the greater depth to the water table, and that sedges colonizing these areas could further attenuate CH4 fluxes during dry periods. However, during wet periods, the sedges may cause CH4 fluxes to be higher than is currently predicted for climate change scenarios.  相似文献   

9.
Drainage of waterlogged sites has been part of the normal forestry practice in Fennoscandia, the Baltic countries, the British Isles and in some parts of Russia since the early 20th century, and currently, about 15 million hectares of peatlands and other wetlands have been drained for forestry purposes. The rate of forest clear-felling on drained peatlands will undergo a rapid increase in the near future, when a large number of these forests approach their regeneration age. A small-scale pilot survey was performed at two nutrient-rich and old peatland drainage areas in southern Finland to study if forest clear-felling has significant impacts on the exchange of nitrous oxide (N2O) and methane (CH4) between soil and atmosphere. The average N2O emissions from the two drainage areas during three growing seasons following clear-felling were 945 and 246 g m–2 d–1. The corresponding CH4 fluxes were –0.07 and –0.52 mg m–2 d–1. Clear-felling had impacts on the environmental factors known to affect the N2O and CH4 fluxes of peatlands, i.e. clear-felling raised the water table level and increased the peat temperature. However, no substantial changes in the fluxes of CH4 following clear-felling were observed. The results concerning N2O indicated a potential for increased emissions following clear-felling of drained peatland forests, but further studies are needed for a critical evaluation of the impacts of clear-felling on the fluxes of CH4 and N2O.  相似文献   

10.
Northern peatland water table position is tightly coupled to carbon (C) cycling dynamics and is predicted to change from shifts in temperature and precipitation patterns associated with global climate change. However, it is uncertain how long-term water table alterations will alter C dynamics in northern peatlands because most studies have focused on short-term water table manipulations. The goal of our study was to quantify the effect of long-term water table changes (~80 years) on gaseous C fluxes in a peatland in the Upper Peninsula of Michigan. Chamber methods were utilized to measure ecosystem respiration (ER), gross primary production (GPP), net ecosystem exchange (NEE), and methane (CH4) fluxes in a peatland experiencing levee induced long-term water table drawdown and impoundment in relation to an unaltered site. Inundation raised water table levels by approximately ~10 cm and resulted in a decrease in ER and GPP, but an increase of CH4 emissions. Conversely, the drained sites, with water table levels ~15 cm lower, resulted in a significant increase in ER and GPP, but a decrease in CH4 emissions. However, NEE was not significantly different between the water table treatments. In summary, our data indicates that long-term water table drawdown and inundation was still altering peatland gaseous C fluxes, even after 80 years. In addition, many of the patterns we found were of similar magnitude to those measured in short-term studies, which indicates that short-term studies might be useful for predicting the direction and magnitude of future C changes in peatlands.  相似文献   

11.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

12.
Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m?2 h?1) to a net emission in the wetter soils (0–90 μmol CH4 m?2 h?1). Seasonal variations of CH4 fluxes were related to soil hydrology in both upland and wet soils. Thus, in the upland soils, uptake rates increased with the decreasing soil moisture, whereas CH4 emission was inversely related to the water table depth in the wet soils. Spatial variability of CH4 exchange was related to the abundance of genes involved in CH4 oxidation and production, but there was no indication of a temporal link between microbial groups and CH4 exchange. Our data show that the abundances of genes involved in CH4 oxidation and production are strongly influenced by soil moisture and each other and grouped by the upland–wetland classification but not forest type.  相似文献   

13.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

14.

Aims and methods

To evaluate the seasonal and spatial variations of methane (CH4) emissions and understand the controlling factors, we measured CH4 fluxes and their environmental variables for the first time by a static chamber technique in high Suaeda salsa marsh (HSM), middle S. salsa marsh (MSM), low S. salsa marsh (LSM) and bare flat (BF) in the northern Yellow River estuary throughout a year.

Results

CH4 emissions from coastal marsh varied throughout different times of the day and significant differences were observed in some sampling periods (p?<?0.05). Over all sampling periods, CH4 fluxes averaged between ?0.392 mgCH4 m?2?h?1 and 0.495 mgCH4 m?2?h?1, and emissions occurred during spring (0.008 mgCH4 m?2?h?1) and autumn (0.068 mgCH4 m?2?h?1) while sinks were observed during summer (?0.110 mgCH4 m?2?h?1) and winter (?0.009 mgCH4 m?2?h?1). CH4 fluxes from the four marshes were not significantly different (p?>?0.05), and emissions occurred in LSM (0.026 mgCH4 m?2?h?1) and BF (0.055 mgCH4 m?2?h?1) while sinks were observed in HSM (?0.035 mgCH4 m?2?h?1) and MSM (?0.022 mgCH4 m?2?h?1). The annual average CH4 flux from the intertidal zone was 0.002 mgCH4 m?2?h?1, indicating that coastal marsh acted as a weak CH4 source. Temporal variations of CH4 emission were related to the interactions of abiotic factors (temperatures, soil moisture and salinity) and the variations of limited C and mineral N in sediments, while spatial variations were mainly affected by the vegetation composition at spatial scale.

Conclusions

This study observed a large spatial variation of CH4 fluxes across the coastal marsh of the Yellow River estuary (CV?=?7856.25 %), suggesting that the need to increase the spatial replicates at fine scales before the regional CH4 budget was evaluated precisely. With increasing exogenous nitrogen loading to the Yellow River estuary, the magnitude of CH4 emission might be enhanced, which should also be paid more attentions as the annual CH4 inventory was assessed accurately.  相似文献   

15.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

16.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

17.
Forest soils are an important component of CO2 and CH4 fluxes at the global scale, but the magnitude of these fluxes varies greatly in space and time within a landscape. Understanding the spatial and temporal distributions of these fluxes across complex landscapes remains a major challenge for researchers and land managers alike. We investigated the spatiotemporal variability of soil-atmosphere CO2 and CH4 fluxes and the relationships of these fluxes to chemical and physical soil properties distributed across a topographically-heterogeneous landscape. Soil CO2 and CH4 fluxes were measured along with soil temperature, moisture, bulk density, texture, carbon, sorption capacity, and dissolved organic matter quality over 2 years along hillslope transects spanning valley bottom, transition zone, and upland landscape positions in a temperate forest watershed. Transition zone soil CO2 efflux was 54–160% higher than low-lying valley bottoms, and 15–54% higher than uplands. Net seasonal CH4 uptake was 58–150% higher in transition zone soils than in uplands, while valley bottoms were occasionally large net sources (up to 19 nmol CH4 m?2 s?1). Soil CO2 efflux and net CH4 uptake were both positively associated with seasonal temperature, and were highest in soils with relatively high carbon and clay content, and relatively low bulk density, moisture, and sorption capacity. We concluded that: (1) transition zone soils act as landscape hotspots for net CH4 uptake in addition to CO2 efflux, and (2) that this spatial distribution is more consistent across seasons for net CH4 uptake than for CO2 efflux.  相似文献   

18.
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long‐term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. ?1.0 to 12.6 mg m?2 h?1 in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300–400 mg m?2 h?1) and lowest during the wet period (60–132 mg m?2 h?1) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within‐site variability in gas release but the effect was site‐specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model.  相似文献   

19.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

20.
Peatlands are large terrestrial stores of carbon, and sustained CO2 sinks, but over the last century large areas have been drained for agriculture and forestry, potentially converting them into net carbon sources. More recently, some peatlands have been re-wetted by blocking drainage ditches, with the aims of enhancing biodiversity, mitigating flooding, and promoting carbon storage. One potential detrimental consequence of peatland re-wetting is an increase in methane (CH4) emissions, offsetting the benefits of increased CO2 sequestration. We examined differences in CH4 emissions between an area of ditch-drained blanket bog, and an adjacent area where drainage ditches were recently infilled. Results showed that Eriophorum vaginatum colonization led to a “hotspot” of CH4 emissions from the infilled ditches themselves, with smaller increases in CH4 from other re-wetted areas. Extrapolated to the area of blanket bog surrounding the study site, we estimated that CH4 emissions were around 60 kg CH4 ha?1 y?1 prior to drainage, reducing to 44 kg CH4 ha?1 y?1 after drainage. We calculated that fully re-wetting this area would initially increase emissions to a peak of around 120 kg CH4 ha?1 y?1, with around two-thirds of the increase (and 90% of the increase over pre-drainage conditions) attributable to CH4 emissions from E. vaginatum-colonized infilled ditches, despite these areas only occupying 7% of the landscape. We predicted that emissions should eventually decline toward pre-drainage values as the ecosystem recovers, but only if Sphagnum mosses displace E. vaginatum from the infilled ditches. These results have implications for peatland management for climate change mitigation, suggesting that restoration methods should aim, if possible, to avoid the colonization of infilled ditches by aerenchymatous species such as E. vaginatum, and to encourage Sphagnum establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号