首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA sequence of 106 BAC/PAC clones in the minimum tiling path (MTP) of the long arm of rice chromosome 11, between map positions 57.3 and 116.2 cM, has been assembled to phase 2 or PLN level. This region has been sequenced to 10× redundancy by the Indian Initiative for Rice Genome Sequencing (IIRGS) and is now publicly available in GenBank. The region, excluding overlaps, has been predicted to contain 2,932 genes using different software. A gene-by-gene BLASTN search of the NCBI wheat EST database of over 420,000 cDNA sequences revealed that 1,143 of the predicted rice genes (38.9%) have significant homology to wheat ESTs (bit score 100). Further BLASTN search of these 1,143 rice genes with the GrainGenes database of sequence contigs containing bin-mapped wheat ESTs allowed 113 of the genes to be placed in bins located on wheat chromosomes of different homoeologous groups. The largest number of genes, about one-third, mapped to the homoeologous group 4 chromosomes of wheat, suggesting a common evolutionary origin. The remaining genes were located on wheat chromosomes of different groups with significantly higher numbers for groups 3 and 5. Location of bin-mapped wheat contigs to chromosomes of all the seven homoeologous groups can be ascribed to movement of genes (transpositions) or chromosome segments (translocations) within rice or the hexaploid wheat genomes. Alternatively, it could be due to ancient duplications in the common ancestral genome of wheat and rice followed by selective elimination of genes in the wheat and rice genomes. While there exists definite conservation of gene sequences and the ancestral chromosomal identity between rice and wheat, there is no obvious conservation of the gene order at this level of resolution. Lack of extensive colinearity between rice and wheat genomes suggests that there have been many insertions, deletions, duplications and translocations that make the synteny comparisons much more complicated than earlier thought. However, enhanced resolution of comparative sequence analysis may reveal smaller conserved regions of colinearity, which will facilitate selection of markers for saturation mapping and sequencing of the gene-rich regions of the wheat genome.  相似文献   

2.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   

3.
4.
A β-carotene is the most well-known dietary source as provitamin A carotenoids. Among β-carotene-producing Golden Rice varieties, PAC (Psy:2A:CrtI) rice has been previously developed using a bicistronic recombinant gene that linked the Capsicum Psy and Pantoea CrtI genes by a viral 2A sequence. To enhance β-carotene content by improving this PAC gene, its codon was optimized for rice plants (Oryza sativa L.) by minimizing the codon bias between the transgene donor and the host rice and was then artificially synthesized as stPAC (stPsy:2A:stCrtI) gene. The GC content (58.7 from 50.9%) and codon adaptation index (0.85 from 0.77) of the stPAC gene were increased relative to the original PAC gene with 76% DNA identity. Among 67 T1 seeds of stPAC transformants showing positive correlations between transgene copy numbers (up to three) and carotenoid contents, three stPAC lines with a single intact copy were chosen to minimize unintended insertional effects and compared to the representative line of the PAC transgene with respect to their codon optimization effects. Translation levels were stably increased in all three stPAC lines (3.0-, 2.5-, 2.9-fold). Moreover, a greater intensity of the yellow color of stPAC seeds was correlated with enhanced levels of β-carotene (4-fold, 2.37 μg/g) as well as total carotenoid (2.9-fold, 3.50 μg/g) relative to PAC seeds, suggesting a β-branch preference for the stPAC gene. As a result, the codon optimization of the transgene might be an effective tool in genetic engineering for crop improvement as proven at the enhanced levels of translation and carotenoid production.  相似文献   

5.
Classification and characterization of the rice α-amylase multigene family   总被引:18,自引:0,他引:18  
To establish the size and organization of the rice -amylase multigene family, we have isolated 30 -amylase clones from three independent genomic libraries. Partial characterization of these clones indicates that they fall into 5 hybridization groups containing a total of 10 genes. Two clones belonging to the Group 3 hybridization class have more than one gene per cloned fragment. The nucleotide sequence of one clone from Group 1, OSg2, was determined and compared to other known cereal -amylase sequences revealing that OSg2 is the genomic analog of the rice cDNA clone, pOS103. The rice -amylase genes in Group 1 are analogous to the -Amy1 genes in barley and wheat. OSg2 contains sequence motifs common to most actively transcribed genes in plants. Two consensus sequences, TAACA G A A and TATCCAT, were found in the 5 flanking regions of -amylase genes of rice, barley and wheat. The former sequence may be specific to -amylase gene while the latter sequence may be related to a CATC box found in many plant genes. Another sequence called the pyrimidine box ( T C CTTTT T C ) was found in the -amylase genes as well as other genes regulated by gibberellic acid (GA). Comparisons based on amino acid sequence alignment revealed that the multigene families in rice, barley and wheat shared a common ancestor which contained three introns. Some of the descendants of the progenitor -amylase gene appear to have lost the middle intron while others maintain all three introns.  相似文献   

6.
A recombinant protein with a cDNA that encodes the putative subunit of a rice heterotrimeric G protein was synthesized in Escherichia coli and purified. The recombinant protein (rGrice ) with an apparent molecular mass of 45 kDa was bound with guanosine 5-(3-O-thio)triphosphate with an apparent association constant (kapp) of 0.36. The protein also hydrolyzed GTP and its Kcat was 0.44. rGrice was ADP-ribosylated by activated cholera toxin.Monoclonal antibodies raised against rGrice reacted with a 45 kDa polypeptide localized in the plasma membrane of rice seedlings. The peptide map of this polypeptide after digestion with V8 protease was identical to that of rGrice . A 45 kDa polypeptide in the plasma membrane, as well as rGrice , was ADP-ribosylated by activated cholera toxin. The GTPase activity of the plasma membrane was stimulated 2.5-fold by mastoparan 7 but not mastoparan 17. These properties were similar to those of the subunits of heterotrimeric G proteins in animals, suggesting that the putative subunit is truly the subunit itself.  相似文献   

7.
Ethylene stimulated the elongation of intact rice (Oryza sativaL.) coleoptiles in which endogenous growth had been stoppedcompletely by decapitation and red light. p-Chlorophenoxyisobutyricacid slightly inhibited endogenous growth, but not the ethyleneinduced growth. Thus, ethylene could stimulate the elongationof coleoptiles in which the auxin level was considered to bevery low. 1 Present address: Institute for Agricultural Research, TohokuUniversity, Katahira, Sendai 980, Japan. (Received February 16, 1979; )  相似文献   

8.
Process-based crop simulation models require employment of new knowledge for continuous improvement. To simulate growth and development of different genotypes of a given crop, most models use empirical relationships or parameters defined as genetic coefficients to represent the various cultivar characteristics. Such a loose introduction of different cultivar characteristics can result in bias within a simulation, which could potentially integrate to a high simulation error at the end of the growing season when final yield at maturity is predicted. Recent advances in genetics and biomolecular analysis provide important opportunities for incorporating genetic information into process-based models to improve the accuracy of the simulation of growth and development and ultimately the final yield. This improvement is especially important for complex applications of models. For instance, the effect of the climate change on the crop growth processes in the context of natural climatic and soil variability and a large range of crop management options (e.g., N management) make it difficult to predict the potential impact of the climate change on the crop production. Quantification of the interaction of the environmental variables with the management factors requires fine tuning of the crop models to consider differences among different genotypes. In this paper we present this concept by reviewing the available knowledge of major genes and quantitative trait loci (QTLs) for important traits of rice for improvement of rice growth modelling and further requirements. It is our aim to review the assumption of the adequacy of the available knowledge of rice genes and QTL information to be introduced into the models. Although the rice genome sequence has been completed, the development of gene-based rice models still requires additional information than is currently unavailable. We conclude that a multidiscipline research project would be able to introduce this concept for practical applications.  相似文献   

9.
Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ–XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.  相似文献   

10.
We evaluated the effect of heat–moisture treatment (HMT) on the main chemical components, physical properties, and enzyme activities of two types of brown rice flour: high-amylose Koshinokaori and normal-quality Koshiibuki. Five different HMTs using brown rice (moisture content was 12.0%) were assessed: 0.1 MPa/120 °C for 5 or 10 min, 0.2 MPa/134 °C for 5 or 10 min and 0.3 MPa/144 °C for 10 min. HMT, decreased the α-amylase and lipase activities, and fat acidity, and slightly increased the dietary fiber and resistant starch levels. After 2 months’ storage at 35 °C, rice samples that were treated with 0.2 MPa/134 °C or 0.3 MPa/144 °C for 10 min had a lower fat acidity than untreated samples, which would be useful for long-term storage and export of rice flour. And HMT exhibited inhibition of retrogradation in the pasting and physical properties, which is profitable to promote the qualities of the rice products.  相似文献   

11.
The regulatory effect of light quality on the photosynthetic apparatus in attached leaves of rice plants was investigated by keeping rice plants under natural light, in complete darkness, or under illumination with light of different colors. When leaves were left in darkness and far-red (FR)-light conditions for 6 days at 30°C, there was an initial lag in chlorophyll (Chl) content, Chl a/b ratio, and maximum photosystem (PS) II photochemistry that lasted until the second day; these then rapidly decreased on the fourth day. In contrast, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) rapidly disappeared with no lag under low or zero light conditions. By using spectrophotometric quantitation, it was determined that the PSII and PSI reaction centers were regulated by light quality, but cytochrome (Cyt) f was regulated by light intensity. However, the PSII heterogeneity was also strongly modified by the light intensity; PSIIα with the large antenna decreased markedly both in content and in antenna size. Consequently, the PSIIα/PSI ratio declined under FR-light because the low intensity of FR-light dominated over its quality in the modulation of the PSIIα/PSI ratio. An imbalance between them induced the generation of reactive oxygen species (ROS), although the ROS were scavenged by stromal enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). The activities of these stromal enzymes are also regulated by light quality. Thus, although the photosynthetic apparatus is regulated differently depending on light quality, light quality may play an important role in the regulation of the photosynthetic apparatus.  相似文献   

12.
India has more than 215 million food‐insecure people, many of whom are farmers. Genetically modified (GM) crops have the potential to alleviate this problem by increasing food supplies and strengthening farmer livelihoods. For this to occur, two factors are critical: (i) a change in the regulatory status of GM crops, and (ii) consumer acceptance of GM foods. There are generally two classifications of GM crops based on how they are bred: cisgenically bred, containing only DNA sequences from sexually compatible organisms; and transgenically bred, including DNA sequences from sexually incompatible organisms. Consumers may view cisgenic foods as more natural than those produced via transgenesis, thus influencing consumer acceptance. This premise was the catalyst for our study—would Indian consumers accept cisgenically bred rice and if so, how would they value cisgenics compared to conventionally bred rice, GM‐labelled rice and ‘no fungicide’ rice? In this willingness‐to‐pay study, respondents did not view cisgenic and GM rice differently. However, participants were willing‐to‐pay a premium for any aforementioned rice with a ‘no fungicide’ attribute, which cisgenics and GM could provide. Although not significantly different (P = 0.16), 76% and 73% of respondents stated a willingness‐to‐consume GM and cisgenic foods, respectively.  相似文献   

13.
Nitrogen use efficiency of rice reconsidered: What are the key constraints?   总被引:20,自引:1,他引:19  
Cassman  K. G.  Kropff  M. J.  Gaunt  J.  Peng  S. 《Plant and Soil》1993,155(1):359-362
Recent field studies on irrigated rice at the IRRI research farm indicate efficient use of fertilizer-N based on plant uptake of applied N, (estimated by N difference), and utilization of acquired N for increased grain yield. These findings contrast with 15N uptake in microplot studies which underestimate the actual increase in plant N from added fertiliser. Constraints other than uptake efficiency, however, may govern fertiliser-N efficiency in farmers fields. In a study of 44 farmers' fields in Central Luzon, rice yields ranged from 2.5 to 6.2 t ha-1 and N uptake from 35 to 95 kg N ha-1 in plots without fertiliser-N addition. Farmers applied from 35 to 240 kg N ha-1, but there was no relationship between the N rate used by each farmer and the effective soil N supply. Mean N uptake efficiency from fertiliser by N difference was only 36%. We conclude that improved fertiliser-N efficiency by farmers will require a more information-intensive management strategy that makes N fertiliser inputs better fitted to the seasonal pattern of crop N demand and soil N supply.  相似文献   

14.
A very sensitive and specific bioassay using prohexadione calcium [BX-112, which blocks 2- and 3-hydroxylation of gibberellins (GAs)] with uniconazole (which blocks oxidation of ent-kaurene, ent-kaurenol and ent-kaurenal) in a microdrop assay was developed for several rice (Oryza sativa L.) varieties, including cv. Waito-C, which is already specific to 3-hydroxylated GAs. The sensitivity and specificity of cvs. Waito-C, Tan-ginbozu and Koshihikari to 3-hydroxylated GAs was greatly enhanced by treatment of the seeds with a combination of 40 mM prohexadione calcium and 80 M uniconazole. The minimum detectable doses of 3-hydroxylated GAs (GA1, GA3, GA4 and GA7) in the three cultivars treated with both chemicals were 1 to 10 fmol (i.e. ca. 350 fg to 3.5 pg) per plant. This is equal to 30-fold more sensitive than Waito-C treated with uniconazole alone, and 30 to 1000-fold more sensitive than Waito-C with no growth retardant soak. Minimum detectable doses of 3-nonhydroxylated GAs (GA9, GA19 GA20) and GAs with very low biological activity (GA8 and GA17) were equal to or more than 1000 fmol per plant. This is about equal to the activity in Waito-C treated with uniconazole alone. Application of this assay to an extract from Raphanus sativus was compared with the data by gas chromatography/mass spectrometry (GC/MS), confirming the conclusions reached using authentic test GAs, namely that use of uniconazole plus BX-112 appreciably enhanced the detection sensitivity to fractions shown by GC/MS to contain GA1 and GA4, both 3-hydroxylated GAs.Abbreviations GA gibberellin - BX-112 prohexadione calcium  相似文献   

15.
The Gns1 gene of rice (Oryza sativa L. japonica) encodes 1,3;1,4- glucanase (EC 3.2.1.73), which hydrolyzes 1,3;1,4--glucosidic linkages on 1,3;1,4--glucan, an important component of cell walls in the Poaceae family. RNA and protein gel blot analyses demonstrated that blast disease or dark treatment induced the expression of the Gns1 gene. To assess the function of the Gns1 gene in disease resistance, we characterized transgenic rice plants constitutively expressing the Gns1 gene. The introduced Gns1 gene was driven by the CaMV 35S promoter and its products were found in the apoplast and accumulated in up to 0.1% of total soluble protein in leaves. Although transgenic plants showed stunted growth and impaired root formation, fertility, germination, and coleoptile elongation appeared unaffected compared to non-transgenic control plants, indicating that Gns1 does not play a crucial role in rice germination and coleoptile elongation. When transgenic plants were inoculated with virulent blast fungus (Magnaporthe grisea), they developed many resistant-type lesions on the inoculated leaf accompanying earlier activation of defense-related genes PR-1 and PBZ1 than in control plants. Transgenic plants spontaneously produced brown specks, similar in appearance to those reported for an initiation type of disease-lesion-mimic mutants, on the third and fourth leaves and occasionally on older leaves without inoculation of pathogens. Expression of the two defense-related genes was drastically increased after the emergence of the lesion-mimic phenotype.  相似文献   

16.
Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars   总被引:7,自引:0,他引:7  
We investigated the CpG methylation status of the sequence CCGG in the rice genome by using methylation-sensitive AFLP and subsequent Southern analyses with the isolated AFLP fragments as probes. CpGs located in single- or low-copy-sequence regions could be grouped into two classes on the basis of their methylation status: methylation status at the class 1 CpG sites was conserved among genetically diverse rice cultivars, whereas cultivar-specific differential methylation was frequently detected among the cultivars at the class 2 CpG sites. The frequency of occurrence of methylation polymorphism between a pair of cultivars was not related to the genetic distance between the two. Through mapping, five class 2 CpG sites were localized on different chromosomes and were not clustered together in the genome. Segregation analysis of the cultivar-specific methylations with their target sites indicated that the differential methylation was stably inherited in a Mendelian fashion over 6 generations, although alterations in the methylation status at the class 2 CpG sites were observed with a low frequency.  相似文献   

17.
Globulin was isolated from milled rice (Oryza sativa, line IR480-5-9) by 5% NACl extraction and was precipitated by (NH4)2SO2 or by dialysis against water. The extract was purified by repeated isoelectric precipitation at pH 4.5. The major globulin fraction (40%) exhibited one band by electrophoresis at pH 4.5 but two bands at pH 8.3. Similarly, one sharp peak was shown by sedimentation corresponding to 1.41S (α-globulin) in acetic acid (pH 2) and NaOH (pH 11.7) but a broad asymmetric peak was obtained at pH 6.7, 8.3 and 8.9. Gel filtration of the α-globulin at pH 6.5 exhibited 2 proteins with MW 20 000 and 98 000. The results suggest a pH dependent aggregation phenomenon. The two proteins could not be separated by DEAE-cellulose chromatography. SDS-polyacrylamide electrophoresis of α-globulin revealed one subunit with MW 18 000. This α-globulin is poorer in lysine and histidine but richer in cystine, methionine, arginine, tyrosine and glutamic acid than whole milled rice proteinfa]Taken part from the M.S. thesis of AAP from the University of the Philippine at Los Baños (1977).  相似文献   

18.
19.
A transgenic rice that produces both the α′ and β subunits of β-conglycinin has been developed through the crossing of two types of transgenic rice. Although the accumulation level of the α′ subunit in the α′β-transgenic rice was slightly lower than that in the transgenic rice producing only the α′ subunit, the accumulation level of the β subunit in the α′β-transgenic rice was about 60% higher than that in the transgenic rice producing only the β subunit. Results from sequential extraction and gel-filtration experiments indicated that part of the β subunit formed heterotrimers with the α′ subunit in a similar manner as in soybean seeds and that the heterotrimers interacted with glutelin via cysteine residues. These results imply that the accumulation level of the β subunit in the α′β-transgenic rice increases by an indirect interaction with glutelin. Immunoelectron microscopy revealed that the α′ and β subunits are localized in a low electron-dense region of protein body-II (PB-II) and that α′ homotrimers in the α′β-transgenic rice seeds seem to accumulate outside of this low electron-dense region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号