首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only expressed in M cells and the gene product is responsible for the secretion of the mating pheromone, M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins and to the Saccharomyces cerevisiae STE6 gene product, which mediates export of a-factor mating pheromone. We show that STE6 can also mediate secretion of M-factor in S. pombe. Received: 20 December 1996 / Accepted: 29 January 1997  相似文献   

2.
The mam4 mutation of Schizosaccharomyces pombe causes mating deficiency in h- cells but not in h+ cells. h- cells defective in mam4 do not secrete active mating pheromone M-factor. We cloned mam4 by complementation. The mam4 gene encodes a protein of 236 amino acids, with several potential membrane-spanning domains, which is 44% identical with farnesyl cysteine carboxyl methyltransferase encoded by STE14 and required for the modification of a-factor in Saccharomyces cerevisiae. Analysis of membrane fractions revealed that mam4 is responsible for the methyltransferase activity in S. pombe. Cells defective in mam4 produced farnesylated but unmethylated cysteine and small peptides but no intact M-factor. These observations strongly suggest that the mam4 gene product is farnesyl cysteine carboxyl methyltransferase that modifies M-factor. Furthermore, transcomplementation of S. pombe mam4 allowed us to isolate an apparent homolog of mam4 from Xenopus laevis (Xmam4). In addition to its sequence similarity to S. pombe mam4, the product of Xmam4 was shown to have a farnesyl cysteine carboxyl methyltransferase activity in S. pombe cells. The isolation of a vertebrate gene encoding farnesyl cysteine carboxyl methyltransferase opens the way to in-depth studies of the role of methylation in a large body of proteins, including Ras superfamily proteins.  相似文献   

3.
The pmd1 +, a multidrug resistance gene of the fission yeast Schizosaccharomyces pombe, encodes a protein similar to the budding yeast Saccharomyces cerevisiae STE6 gene product and mammalian P-glycoproteins. The STE6 protein is a membrane transporter of a-factor, a mating pheromone of a-type S. cerevisiae, which is structurally related to M-factor of the fission yeast. However, heterothallic or homothallic pmd1 null mutant cells of S. pombe, which were constructed by means of gene disruption, showed no significant decrease in the mating abilities. On the other hand, the multidrug resistance conferred by the pmd1 + was overcome by the treatment with verapamil, a typical inhibitor of mammalian P-glycoproteins. These results indicate that the pmd1 + gene product is functionally similar to mammalian P-glycoproteins, rather than to the budding yeast STE6.  相似文献   

4.
5.
6.
Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.  相似文献   

7.
Mating pheromone signaling is essential for conjugation between haploid cells of P-type (P-cells) and haploid cells of M-type (M-cells) in Schizosaccharomyces pombe. A peptide pheromone, M-factor, produced by M-cells is recognized by the receptor of P-cells. An M-factor-less mutant, in which the M-factor-encoding genes are deleted, is completely sterile. In liquid culture, sexual agglutination was not observed in the mutant, but it could be recovered by adding exogenous synthetic M-factor, which stimulated expression of the P-type-specific cell adhesion protein, Map4. Exogenous M-factor, however, failed to recover the cell fusion defect in the M-factor-less mutant. When M-factor-less cells were added to a mixture of wild-type P- and M-cells, marked cell aggregates were formed. Notably, M-factor-less mutant cells were also incorporated in these aggregates. In this mixed culture, P-cells conjugated preferentially with M-cells secreting M-factor, and rarely with M-factor-less M-cells. The kinetics of mating parameters in liquid culture revealed that polarized growth commenced from the contact region of opposite mating-type cells. Taken together, these findings indicate that M-factor at a low concentration induces adhesin expression, leading to initial cell-cell adhesion in a type of “distal pheromone action”, but M-factor that is secreted directly in the proximity of the adhered P-cells may be necessary for cell fusion in a type of “proximal pheromone action”.  相似文献   

8.
The STE4 gene of Saccharomyces cerevisiae encodes the beta subunit of the yeast pheromone receptor-coupled G protein. Overexpression of the STE4 protein led to cell cycle arrest of haploid cells. This arrest was like the arrest mediated by mating pheromones in that it led to similar morphological changes in the arrested cells. The arrest occurred in haploid cells of either mating type but not in MATa/MAT alpha diploids, and it was suppressed by defects in genes such as STE12 that are needed for pheromone response. Overexpression of the STE4 gene product also suppressed the sterility of cells defective in the mating pheromone receptors encoded by the STE2 and STE3 genes. Cell cycle arrest mediated by STE4 overexpression was prevented in cells that either were overexpressing the SCG1 gene product (the alpha subunit of the G protein) or lacked the STE18 gene product (the gamma subunit of the G protein). This finding suggests that in yeast cells, the beta subunit is the limiting component of the active beta gamma element and that a proper balance in the levels of the G-protein subunits is critical to a normal mating pheromone response.  相似文献   

9.
10.
MAT alpha haploids with mutations in the STE13 or KEX2 gene, and MATa haploids with mutations in the STE6 or STE14 gene, do not mate with wild-type cells of the opposite mating type. We found that such mutants were able to mate with partners that carry mutations (sst1 and sst2) that cause cells to be supersensitive to yeast mating pheromone action. Mating ability of MAT alpha ste13 and MAT alpha kex2 mutants could also be restored by adding normal MAT alpha cells to mating mixtures or by adding just the appropriate purified pheromone (alpha-factor). Therefore, the mating deficiencies caused by the ste13 and kex2 lesions, and by inference, the ste6 and ste14 mutations, appear to result only from secretion of an insufficient amount of pheromone or a nonfunctional pheromone.  相似文献   

11.
《Gene》1997,193(2):203-210
We report the cloning and characterization of a new S. pombe gene, efc25+, for `exchange factor Cdc25-like'. The C-terminal region of the predicted product of this gene displays high sequence homology with a number of guanine nucleotide exchange factors for Ras. These include Cdc25 of Saccharomyces cerevisiae, Cdc25 of Saccharomyces kluyveri, Csc25 of Candida albicans, Sdc25 of S. cerevisiae and Ste6 of Schizosaccharomyces pombe. Disruption of efc25+ resulted in cells with a spherical shape reminiscent of the abnormal morphological phenotype of ras1 deletion mutants. However, unlike ras1 null mutants, strains deleted for efc25+ were proficient for mating and sporulation. This differs from the only other Ras1 exchange factor characterized so far in S. pombe, the Ste6 protein, whose deletion results in defects in mating and sporulation but not in cell shape. We hypothesize that Efc25 is an exchange factor for Ras1 and that it is involved in a signaling pathway different from that involving Ste6.  相似文献   

12.
13.
Candida albicans is the single, most frequently isolated human fungal pathogen. As with most fungal pathogens, the factors which contribute to pathogenesis in C. albicans are not known, despite more than a decade of molecular genetic analysis. Candida albicans was thought to be asexual until the discovery of the MTL loci homologous to the mating type (MAT) loci in Saccharomyces cerevisiae led to the demonstration that mating is possible. Using Candida albicans mutants in genes likely to be involved in mating, we analysed the process to determine its similarity to mating in Saccharomyces cerevisiae. We examined disruptions of three of the genes in the MAPK pathway which is involved in filamentous growth in both S. cerevisiae and C. albicans and is known to control pheromone response in the former fungus. Disruptions in HST7 and CPH1 blocked mating in both MTLa and MTL(alpha) strains, whereas disruptions in STE20 had no effect. A disruption in KEX2, a gene involved in processing the S. cerevisiae pheromone Mf(alpha), prevented mating in MTL(alpha) but not MTLa cells, whereas a disruption in HST6, the orthologue of the STE6 gene which encodes an ABC transporter responsible for secretion of the Mfa pheromone, prevented mating in MTLa but not in MTL(alpha) cells. Disruption of two cell wall genes, ALS1 and INT1, had no effect on mating, even though ALS1 was identified by similarity to the S. cerevisiae sexual agglutinin, SAG1. The results reveal that these two diverged yeasts show a surprising similarity in their mating processes.  相似文献   

14.
The mating type locus (MAT) determines the three yeast cell types, a, α, and a/α. It has been proposed that alleles of this locus, MATa and MATα, encode regulators that control expression of unlinked genes necessary for mating and sporulation. Specifically, the α1 product of MATα is proposed to be a positive regulator of α-specific genes. To test this view, we have assayed RNA production from the α-specific STE3 gene in the three cell types and in mutants defective in MATα. The STE3 gene was cloned by screening a yeast genomic clone bank for plasmids that complement the mating defect of ste3 mutants. Using the cloned STE3 gene as a probe, we find that a cells produce STE3 RNA, whereas a and a/a cells do not. Furthermore, matα 1 mutants do not produce STE3 RNA, whereas matα 2 mutants do. These results show that the STE3 gene, required for mating only by α cells, is expressed only in α cells. They show also that production of RNA from the STE3 gene requires the α1 product of MATα. Thus α1 positively regulates at least one α-specific gene by increasing the level of that gene's RNA product.  相似文献   

15.
Eukaryotic proteins containing a C-terminal CAAX motif undergo a series of posttranslational CAAX-processing events that include isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. We demonstrated previously that the STE14 gene product of Saccharomyces cerevisiae mediates the carboxyl methylation step of CAAX processing in yeast. In this study, we have investigated the subcellular localization of Ste14p, a predicted membrane-spanning protein, using a polyclonal antibody generated against the C terminus of Ste14p and an in vitro methyltransferase assay. We demonstrate by immunofluorescence and subcellular fractionation that Ste14p and its associated activity are localized to the endoplasmic reticulum (ER) membrane of yeast. In addition, other studies from our laboratory have shown that the CAAX proteases are also ER membrane proteins. Together these results indicate that the intracellular site of CAAX protein processing is the ER membrane, presumably on its cytosolic face. Interestingly, the insertion of a hemagglutinin epitope tag at the N terminus, at the C terminus, or at an internal site disrupts the ER localization of Ste14p and results in its mislocalization, apparently to the Golgi. We have also expressed the Ste14p homologue from Schizosaccharomyces pombe, mam4p, in S. cerevisiae and have shown that mam4p complements a Δste14 mutant. This finding, plus additional recent examples of cross-species complementation, indicates that the CAAX methyltransferase family consists of functional homologues.  相似文献   

16.
《Gene》1997,190(1):99-104
A putative MAP-kinase kinase-encoding gene, CaSTE7, was isolated from Candida albicans by complementation of ste7 and stell mutants of the pheromone signal-transduction pathway of Saccharomyces cerevisiae. The nucleotide (nt) sequence revealed an ORF of 1767 nt encoding a putative protein of 589 amino acids (aa). CaSTE7 has a strong homology with MAP-kinase kinase STE7 of S. cerevisiae, the kinase domain having 45% homology with that of STE7. The deduced aa sequence contained all eleven consensus kinase subdomains found in MAP-kinase kinases. It can suppress the mating defect of ste5, stell, ste7, and fus3 kssl double mutants, but it cannot bypass the ste12 mutation. CaSTE7 behaves as a hyperactive allele of STE7, suppressing the mating defects of the pheromone signal-transduction pathway by constitutively stimulating STE12, and hence STE12-dependent processes.  相似文献   

17.
Candida albicans STE13ca gene was identified by its homology to the Saccharomyces cerevisiae STE13 gene that encodes for the dipeptidyl aminopeptidase A (DAP A) involved in the maturation of α-factor mating pheromone. Our study revealed that C. albicans ATCC 10231 depicts dipeptidyl aminopeptidase activity. We also analyzed the expression of the STE13ca gene homologue from this pathogenic yeast. This gene of 2793 pb is homozygotic and encodes for a predicted protein of 930 amino acids with a molecular weight of 107,035 Da. The predicted protein displays significant sequence similarity to S. cerevisiae Ste13p. This C. albicans gene is located in chromosome R. STE13ca gene increases its levels of expression in conditions of nutritional stress (proline as nitrogen source) and during formation of the germinal tube, suggesting a basic biological function for the STE13ca in this yeast.  相似文献   

18.
The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase.  相似文献   

19.
STE50 is required to sustain pheromone-induced signal transduction in?S. cerevisiae. Here we report that Ste50p is involved in regulating pseudohyphal development. Both of these processes are also dependent on Ste11p. Deletion of STE50 leads to defects in filamentous growth, which can be suppressed by overproduction of Ste11p. Overexpression of STE11 also suppresses the mating defects of ste50 mutants. We have analysed the physical association between Ste50p and Ste11p in extracts of cells harvested under various conditions. A Ste11p-Ste50p complex can be isolated from extracts of cells in which the pheromone response has been activated, as well as from normally growing cells. Formation of the Ste50p-Ste11p complex does not require Gα, Gβ, Ste20p or Ste5p. Oligomerisation of Ste11p is shown to be independent of activation of the pheromone response pathway, and occurs in the absence of Ste50p. We conclude that Ste50p is necessary for Ste11p activity in at least two differentiation programmes: mating and filamentous growth.  相似文献   

20.
The pheromone-responsive Gβ subunit of Saccharomyces cerevisiae (encoded by STE4) is rapidly phosphorylated at multiple sites when yeast cells are exposed to mating pheromone. It has been shown that a mutant form of Ste4 lacking residues 310–346, ste4Δ310–346, cannot be phosphorylated, and that its expression leads to defects in recovery from pheromone stimulation. Based on these observations, it was proposed that phosphorylation of Ste4 is associated with an adaptive response to mating pheromone. In this study we used site-directed mutagenesis to create two phosphorylation null (Pho?) alleles of STE4: ste4-T320?A/S335A and ste4-T322 A/S335A and ste4-T322A/S335A. When expressed in yeast, these mutant forms of Ste4 remained unphosphorylated upon pheromone stimulation. The elimination of Ste4 phosphorylation has no discernible effect on either signaling or adaptation. In addition, disruption of the FUS3 gene, which encodes a pheromone-specific MAP kinase, leads to partial loss of pheromone-induced Ste4 phosphorylation. Two-hybrid analysis suggests that the ste4Δ310–346 deletion mutant is impaired in its interaction with Gpa1, the pheromone-responsive Gα of yeast, whereas the Ste4-T320A/S335A mutant has normal affinity for Gpa1. Taken together, these results indicate that pheromone-induced phosphorylation of Ste4 is not an adaptive mechanism, and that the adaptive defect exhibited by the 310–346 deletion mutant is likely to be due to disruption of the interaction between Ste4 and Gpa1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号