首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A novel isolate, designated 6408J-67T, was isolated from an air sample collected from Jeju Island, Republic of Korea. Its phenotypic, genotypic, and chemotaxonomic properties were compared with those of members of the family Microbacteriaceae. The Gram-positive, aerobic, motile rod formed light yellow, smooth, circular and convex colonies. Optimal growth occurred at 30°C and pH 7.0. 16S rRNA gene sequence data showed that the isolate was a novel member of the family Microbacteriaceae, with the highest sequence similarity (97.4%) to Labedella gwakjiensis KSW2-17T and less (<97%) sequence similarity with other taxa. The major cellular fatty acids (>10% of the total) were anteiso-C15:0, iso-C14:0, and iso-C16:0. The strain also contained MK-13, MK-12, and MK-14 as the major menaquinones, as well as diphosphatidylglycerol, phosphatidylglycerol, and two unknown glycolipids. Its peptidoglycan structure was B1β with 2,4-diaminobutyric acid as a diamino acid. Mycolic acids were absent. The DNA G+C content was 68.3 mol%. Based on these phenotypic and genotypic findings, strain 6408J-67T represents a novel species of a new genus within the family Microbacteriaceae, for which the name Diaminobutyricimonas aerilata gen. nov., sp. nov. is proposed. The type strain is 6408J-67T (=KACC 15518T =NBRC 108726T).  相似文献   

2.
Two bacterial strains, KIS66-7T and 5GH26-15T, were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7T had the highest similarities with those of Labedella gwakjiensis KSW2-17T (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2SbT (97.2%), Leifsonia naganoensis JCM 10592T (97.0%), and Cryobacterium mesophilum MSL-15T (97.0%). Strain 5GH26-15T showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7T exhibited 96.4% similarity with that from 5GH26-15T. Strain KIS66-7T contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C15:0, ai-C17:0, and i-C16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C15:0, i-C16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7T and 5GH26-15T represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7T=KACC 15515T=NBRC 108724T) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15T=KACC 15524T=NBRC 108755T) within the family Microbacteriaceae.  相似文献   

3.
The bacterial strain M1T8B10T was isolated from cow dung in Suwon, Republic of Korea. The strain was a Gram stain-positive rod, nonmotile, and non-spore-forming. According to 16S rRNA gene sequence analysis, the strain fell within the clade of the genus Leucobacter, showing the highest sequence similarities with Leucobacter aridicollis L-9T (98.7%), Leucobacter iarius 40T (98.4%), and Leucobacter komagatae JCM 9414T (98.2%). Cell-wall peptidoglycan contained the diagnostic diamino acid 2,4-diaminobutyric acid of the genus Leucobacter, showing B-type cross-linked peptidoglycans. The major fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The quinone system consisted of the menaquinones MK-11 (78%) and MK-10 (22%). The polar lipid profiles contained diphosphatidylglycerol, phosphatidylglycerol, and an unidentified glycolipid. Differences in several physiological features including nitrate reduction enabled the isolate to be differentiated from all recognized Leucobacter species. Based on these phylogenetic, chemotaxonomic, and phenotypic results, the isolate represents a novel species, for which the name Leucobacter denitrificans sp. nov. is proposed. The type strain is M1T8B10T (=KACC 14055T =NBRC 106309T).  相似文献   

4.
A novel actinobacterium, designated strain MSW-19T, was isolated from a seawater sample in Republic of Korea. Cells were aerobic, Gram-positive, non-endospore-forming, and non-motile cocci. Colonies were circular, convex, opaque, and vivid yellow in colour. A phylogenetic tree based on 16S rRNA gene sequences exhibited that the organism formed a distinct clade within the radius encompassing representatives of the family Propionibacteriaceae. The phylogenetic neighbors were the type strains of the genera Friedmanniella, Microlunatus, Micropruina, Propionicicella, and Propionicimonas. Levels of 16S rRNA gene sequence similarity between the isolate and members of the family were less than 95.3%. The cell wall peptidoglycan of the organism contained LL-diaminopimelic acid as the diagnostic diamino acid. The isolate contained MK-9(H4) as the predominant menaquinone, ai-C15:0 as the major fatty acid and polar lipids including phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. The G+C content of the DNA was 69.6 mol%. On the basis of the phenotypic and phylogenetic data presented here, the isolate is considered to represent a novel genus and species in the family Propionibacteriaceae, for which the name Ponticoccus gilvus gen. nov., sp. nov. is proposed. The type strain is strain MSW-19T (= KCTC 19476T= DSM 21351T).  相似文献   

5.
A novel bacterium, designated strain ARSA-15(T), was isolated from a freshwater sample collected from the Cheonho reservoir, Cheonan, Republic of Korea. The isolate was deep-yellow pigment, Gram-negative, rod-shaped, non-motile, and catalase- and oxidase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Flavobacterium, and shared less than 97% sequence similarity with recognized Flavobacterium species. The novel species was able to grow at 10-37°C, pH 6.5-10.0, and in 0-0.5% (w/v) NaCl concentrations. Chemotaxonomically, iso-C(15:1), iso-C(15:0), and iso-C(16:0) were observed to be the predominant cellular fatty acid, and menaquinone-6 (MK-6) was the predominant respiratory quinone. The major polar lipid patterns of strain ARSA-19(T) was phosphatidylethanolamine, unknown aminolipid (AL1 and AL2), and unidentified polar lipids (L1, L2, and L3). The genomic DNA G+C content of the isolate was 39.2 mol%. On the basis of polyphasic approach, strain ARSA-15(T) represents a novel species of the genus Flavobacterium, for which the name Flavobacterium cheonhonense sp. nov. is proposed. The type strain is ARSA-15(T) (=KACC 14967(T) =KCTC 23180(T) =JCM 17064(T)).  相似文献   

6.
An amber-pigmented, Gram-negative, rod-shaped and aerobic bacterial strain devoid of flagella, designated strain JC2131(T) , was isolated from tidal flat sediment of Dongmak in Ganghwa island, South Korea. Identification was carried out on the basis of polyphasic taxonomy. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate belonged to the family Flavobacteriaceae and showed the highest sequence similarity of 94.5% with Lutibacter litoralis KCCM 42118(T). The predominant cellular fatty acids were iso-C(15:0) (25.9%), iso-C(15:0) 3-OH (20.0%) and iso-C(13:0) (12.7%). Flexirubin-type pigments were absent. The major isoprenoid quinone was MK-6. The DNA G+C content was 43.7 mol%. Several phenotypic and chemotaxonomic properties including growth at pH 6, sea salts requirement, aesculin hydrolysis, carbon utilization, DNA G+C content and fatty acid profiles also differentiated the strain from the related members of the family. Therefore, results from the polyphasic taxonomy study suggested that strain JC2131(T) represents a novel genus and species in the family Flavobacteriaceae for which the name Marinitalea sucinacia gen. nov., sp. nov. is proposed (type strain JC2131(T)=KCTC 12705(T)=JCM 14003(T)).  相似文献   

7.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1omega7, 16:0, 18:1omega7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q-9). The DNA G+C content is 63.0 mol%. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6% to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35(T) (=VKM B-2397(T)).  相似文献   

8.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

9.
A novel actinobacterial strain, designated P4-7(T), was isolated from soil of a ginseng field located in Geumsan County, Korea. Cells of the strain were aerobic, Gram-stain-positive, non-motile, short rods. The isolate contained MK-8(H(4)) as the predominant menaquinone, iso-C(16:0), anteiso-C(15:0) and anteiso-C(17:0) as the major fatty acids, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the major polar lipids, glucose, mannose, xylose, ribose and rhamnose as whole-cell sugars, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain P4-7(T) belongs to the family Nakamurellaceae and is most closely related to Nakamurella multipartita, Humicoccus flavidus and Saxeibacter lacteus (96.3, 97.0 and 96.4% similarity to the respective type strains). Based on comparative analyses of the 16S rRNA and rpoB gene sequences and chemotaxonomic data, it is proposed that H. flavidus and S. lacteus be transferred to the genus Nakamurella. Combined genotypic and phenotypic data also suggested that strain P4-7(T) be placed in a novel species of the genus Nakamurella, for which the name Nakamurella panacisegetis sp. nov. is proposed; the type strain is P4-7(T) (=KCTC 19426(T)=CECT 7604(T)).  相似文献   

10.
A mesophilic, facultative, anaerobic, xylanolytic-cellulolytic bacterium, TW1(T), was isolated from sludge in an anaerobic digester fed with pineapple waste. Cells stained Gram-positive, were spore-forming, and had the morphology of straight to slightly curved rods. Growth was observed in the temperature range of 30 to 50°C (optimum 37°C) and the pH range of 6.0 to 7.5 (optimum pH 7.0) under aerobic and anaerobic conditions. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The predominant isoprenoid quinone was menaquinone with seven isoprene units (MK-7). Anteiso-C(15:0), iso-C(16:0), anteiso-C(17:0), and C(16:0) were the predominant cellular fatty acids. The G+C content of the DNA was 49.5 mol%. A phylogenetic analysis based on 16S rRNA showed that strain TW1(T) belonged within the genus Paenibacillus and was closely related to Paenibacillus cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) with 97.7, 97.5, and 97.3% sequence similarity, respectively. The DNA-DNA hybridization values between the isolate and type strains of P. cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) were found to be 18.6, 18.3, and 18.0%, respectively. The protein and xylanase patterns of strain TW1(T) were quite different from those of the type strains of closely related Paenibacillus species. On the basis of DNA-DNA relatedness and phenotypic analyses, phylogenetic data and the enzymatic pattern presented in this study, strain TW1(T) should be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus xylaniclasticus sp. nov. is proposed. The type strain is TW1(T) (=NBRC 106381(T) =KCTC 13719(T) =TISTR 1914(T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号