首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
酰脂是叶绿体膜结构的主要组分,它们的种类和在膜上的分布与膜的功能有关(Rawyler和Siegenthaler 1980)。Henry等(1982)曾证明,叶绿体在体外老化时膜的半乳糖脂和磷脂的相对含量发生变化。ABA一般能加速叶片的衰老反应,它在叶片衰老时积累(Wright和 Hiron 1970)。在气孔开启状态下,激动素有防止衰老的效应(Thimann和Satler 1979)。在衰老的菜豆(Pha-  相似文献   

2.
作者采用气相色谱法对5年生宜昌橙、本地早、国庆一号、锦橙、沙田柚枳砧嫁接树,在抗寒锻炼过程中叶片的膜脂脂肪酸含量的变化进行了研究。结果表明:在日均温为24℃左右时,柑桔叶片开始积累不饱和脂肪酸,冬季叶片不饱和脂肪酸含量最高,比夏季要高60%以上,春季解除抗寒锻炼时,叶片膜不饱和脂肪酸含量下降,饱和脂肪酸含量上升。膜不饱和脂肪酸的积累与气温呈负相关关系。冬季叶片、茎韧皮部和叶绿体等组织器官的膜脂脂肪酸不饱和度、亚麻酸与亚油酸的比值,以及种子中亚油酸与棕榈酸含量之比,均与柑桔品种的抗寒性成正相关。  相似文献   

3.
干旱对大豆线粒体膜脂的磷脂和脂肪酸组分的影响   总被引:7,自引:0,他引:7  
干旱胁迫致使大豆叶片线粒体膜脂的PG摩尔百分含量降低,而LPC,PC,PI,PE,PA则明显提高。抗旱品种和敏感品种之间棕榈酸及亚麻酸含量有明显差异,且抗旱品种叶片线粒体膜脂的总脂肪酸不饱和指数低于敏感品种。  相似文献   

4.
用示差扫描量热计测定了菜豆第一片真叶在衰老过程中叶绿体被膜相变温度与叶绿体总脂熔融温度的变化。15日龄成长叶片叶绿体被膜相变温度为-6.7~-3.6℃,当转向衰老后,在22,29和35日龄时的相变温度分别为3.2~8.8℃、18.7~24.1℃和27.3~37.8℃。叶绿体总脂的熔融温度在15至35日龄期间也逐渐升高,但升高幅度小于被膜相变温度的升高幅度。可是,叶绿体总脂熔融温度范围却大于相应时期被膜相变温度范围。蛋白质含量下降趋势发生在叶片15日龄前,而叶绿素含量下降趋势开始于叶片21日龄之后。  相似文献   

5.
水稻干胚膜脂脂肪酸组分差异性分析   总被引:7,自引:0,他引:7  
水稻干胚膜脂主要由磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰甘油、单半乳糖双甘油脂和双半乳糖双甘油脂组成,其脂肪酸组成主要是棕榈酸、油酸、亚油酸和亚麻酸。干胚线粒体和花粉粒膜脂及其脂肪酸组分与干胚膜脂相似,但配比有所不同。干胚膜脂的脂肪酸不饱和度与水稻品种遗传特性(如低温适应性)有关,而且也受胚形成期温度的影响。脂肪酸不饱和度与温度呈负相关。膜类脂不饱和度的差异主要是由脂肪酸组或的不同配比引起;温度引起的脂肪酸不饱和度的差异是由油酸和亚油酸含量上的变化引起的。干胚膜脂脂肪酸不饱和度与开花结实期低温适应性的关系可能作为水稻开花结实期抗冷性鉴定的一个指标,值得进一步加以研究。  相似文献   

6.
冷害对黄瓜叶绿体类囊体膜的影响   总被引:6,自引:0,他引:6  
研究了冷害温度(0℃,16h)对黄瓜(Cucumis sativus L.)叶绿体类囊体膜膜脂、膜蛋白成分的影响。在没有可见伤害症状的低温处理条件下,黄瓜叶片叶绿体类囊体膜膜脂成分已有变化,主要是磷脂酰甘油(PG)含量明显降低,但主要脂类成分单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、硫代异鼠李糖甘油二酯(SQDC)和PG的脂肪酸组分没有明显的变化;类囊体膜上色素蛋白质复合体的变化以光系统Ⅱ捕光叶绿素a/b蛋白质(LHCⅡ)单体及寡聚体含量的变化最明显,低温处理使LHCⅡ单体比例增加。对提纯的LHCⅡ结合脂的分析表明,低温处理改变了LHCⅡ结合脂及其脂肪酸的组成,使PG含量降低。以上结果表明,LHCⅡ结合脂成分变化以及LHCⅡ寡聚体解聚可能是叶绿体类囊体膜受冷害的最初反应。  相似文献   

7.
对野生发菜(Nostocflagelliforme Bom.et Flab)的膜脂(主要成分为类囊体膜脂)及其脂肪酸组成进行了测定分析.发菜的膜脂由单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)、磷酯酰甘油(PG)和硫代异鼠李糖甘油二酯(SQDG)组成,其酯酰基连接有棕榈酸(16:0)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和亚麻酸(18:3)6种脂肪酸.发菜的不饱和脂肪酸含量可达总脂的73%,特别是16:1和18:3分别高达29%和34%,远远高于已报道的其他蓝藻,说明了发菜类囊体膜具有较强的抗逆性特点.同时还对复水30 min和复水后生长24 h的发菜膜脂及其脂肪酸组成进行了分析.结果表明,复水对野生发菜的膜脂及其脂肪酸组成没有显著影响,说明发菜的膜脂和脂肪酸组成在干燥-吸水过程中能保持很高的稳定性.  相似文献   

8.
水稻离体叶片衰老过程中膜脂组分的变化   总被引:1,自引:0,他引:1  
水稻离体叶片衰老过程中,膜脂磷脂含量随着叶片离体时间的增加而下降,而质膜透性则随时间的增加而上升。BA,Ni~(2 )能延缓叶片磷脂的丧失,ABA,ACC则加速其含量下降,但它们对磷脂酶D活性影响不大。膜脂脂肪酸组分在叶片衰老过程中也发生着变化,其中亚麻酸(18:3)含量下降,不饱和度降低。ABA,ACC促进亚麻酸含量和不饱和度的下降,BA,Ni~(2 )则有延缓作用。  相似文献   

9.
发菜膜脂及其脂肪酸组成   总被引:3,自引:0,他引:3  
王梅  许亦农 《Acta Botanica Sinica》2000,42(12):1263-1266
对野生发菜(Nostoc flagelliforme Born.et Flah)的膜脂(主要成分为类囊体膜脂)及其脂肪酸组成进行了测定分析。发菜的膜脂由单半乳糖甘油二酯(MGDG)、双半乳糖甘油三酯(DGDG)、磷酯酰甘油(PG)和硫代异鼠李糖甘油二酯(SQDG)组成,其酯酰基连接有棕榈酸(16:0)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和亚麻酸(18:  相似文献   

10.
盐胁迫对大麦叶片类囊体膜组成和功能的影响   总被引:37,自引:0,他引:37  
盐胁迫下大麦叶片类囊体膜蛋白和叶绿素含量以及叶绿素a/叶绿素b,磷脂/膜蛋白和膜脂结合半乳糖/膜蛋白比值下降,膜脂中亚麻酸摩尔百分数上长,不饱和指数上升,类囊体膜H^+-ATPase活性先升后降,希尔反应一直呈较高活性。  相似文献   

11.
12.
cotA, a homologue of cemA that encodes a chloroplast envelope membrane protein, was cloned from Synechococcus PCC7942. The gene encodes a protein of 421 amino acids, which is similar in size to CotA of Synechocystis PCC6803 and CemA of liverwort and Chlamydomonas. There was significant sequence homology among these CotA and CemA in the C-terminal region but the homology was low in the N-terminal region. Sequencing of Synechococcus DNA in the cotA region revealed two other genes downstream of cotA, one of which is homologous to cobP and could be cotranscribed with cotA. A mutant (M48) was constructed by inactivating cotA in the wild-type (WT) Synechococcus. The mutant showed the same characteristics as the cotA-deletion mutant of Synechocystis (M29) and was unable to grow in a low sodium medium or at acidic pH under aeration with 3% CO2in air (v/v). Synechococcus cotA did not comple-ment M29. Three chimeric cotA genes of the two cyanobacterial strains were constructed. One of these chimeric genes strongly and the other two weakly complemented the mutant.  相似文献   

13.
Plastidial envelope membranes were isolated from tomato (Lycopersicon esculentum) leaves and green and red tomato fruits by isopycnic discontinuous sucrose density gradient centrifugation. Solubilized envelope membrane proteins were reconstituted into liposomes. Transport measurements revealed that the phosphate translocator from tomato leaves transports inorganic phosphate, 3-phosphoglycerate and triosephosphates. The phosphate translocators of green and red fruit plastids catalyze, in addition to the transport of these substrates, also the transport of glucose-6-phosphate, glucose-1-phosphate and phosphoenolpyruvate.  相似文献   

14.
Plastids are surrounded by two membrane layers, the outer and inner envelope membranes, which have various transport and metabolic activities. A number of envelope membrane proteins have been identified by biochemical approaches and have been assigned to specific functions. Despite those efforts, the chloroplast envelope membrane is expected to contain a number of as yet unidentified proteins that may affect specific aspects of plant growth and development. In this report, we identify and characterize a novel class of inner envelope membrane proteins, designated as Cor413 chloroplast inner envelope membrane group (Cor413im). Both in vivo and in vitro studies indicate that Cor413im proteins are targeted to the chloroplast envelope. Biochemical analyses of Cor413im1 demonstrate that it is an integral membrane protein in the inner envelope of chloroplasts. Quantitative real-time PCR analysis reveals that COR413IM1 is more abundant than COR413IM2 in cold-acclimated Arabidopsis leaves. The analyses of T-DNA insertion mutants indicate that a single copy of COR413IM genes is sufficient to provide normal freezing tolerance to Arabidopsis. Based on these data, we propose that Cor413im proteins are novel components that are targeted to the chloroplast inner envelope in response to low temperature.  相似文献   

15.
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed.  相似文献   

16.
The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.  相似文献   

17.
18.
19.
The localization of protochorophyllide (Pchlide) and of NADPH-protochlorophyllide oxidoreductase (POR, EC 1.6.99.1) within (etio)chloroplasts has been investigated at selected stages of greening of barley seedlings. Pchlide pigment and POR protein contents were evaluated in different plastid membrane fractions by fluorescence spectroscopy and immunoblot analysis using a monospecific polyclonal antibody raised against the purified enzyme. Fluorescence analysis showed the presence of Pchlide in both the envelope and thylakoid membranes. During greening, the Pchlide content, expressed on a total protein basis, decreased in thylakoid membranes, whereas it increased in the envelope membranes. POR proteins were detected mainly in thylakoid membranes at early greening stages. In contrast, the weak amount of POR proteins was associated more specifically with envelope membranes of mature chloroplasts. Whatever the greening stage, thylakoid-bound Pchlide and POR proteins were more abundant in the thylakoid regions which remained unsolubilized after mild Triton treatment used as standard procedure to prepare PS II particles. This suggests the preferential association of Pchlide and POR to the appressed regions of thylakoids. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号