首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage.  相似文献   

2.
Strains of the obligately aerobic nitrogen fixing organismAzotobacter chroococcum were constructed which contained defined chromosomal deletions in which the nitrogenase structural genenifHDK cluster (nifH for the polypeptide of the Fe-protein component of nitrogenase andnifD andnifK for the alpha and beta subunits respectively of the MoFe-protein component of the enzyme) was replaced by a kanamycin resistance gene. N2 fixation was nevertheless observed in deletion strains though only in a molybdenum-deficient medium or in spontaneously arising tungstate-resistant derivatives. In comparison with the parent strain growing in molybdenum-sufficient medium, diazotrophic growth was slow and the nitrogenase activity in vivo was characterised by disproportionately low rates of C2H2-reduction compared to H2-evolution and relative insensitivity of H2-evolution to inhibition by C2H2. The findings show reiteration of functional structural genes for nitrogenase inA. chroococcum consistent with our previous observation of twonifH genes in this organism and detection in this work of a secondnifK-like sequence in the genomes of both parent and deletion strains whenA. chroococcum nifK DNA was used as a probe.  相似文献   

3.
Self-transmissible plasmids carryinghis andnif genes fromKlebsiella pneumoniae have been introduced into threehis mutants ofProteus mirabilis: strains 5006-1, WR19 and WR20. Expression ofhis by the transconjugants was unequivocal, if slightly temperature-sensitive, but none was Nif+ when tested for acetylene reduction in anaerobic glucose medium using inocula from rich or glucose-minimal aerobic agar cultures. Succinate or pyruvate in place of glucose, low glucose, lower temperature or elevated Na2MoO4 did not allownif expression and no nitrogenase MoFe-protein peptide was detected immunologically after exposure to conditions in which diazotrophic enterobacteria, normal or genetically constructed, derepressnif.One strain,P. mirabilis WR19, carrying thehis nif Kmr plasmid pMF250 was examined in detail. Thenif activator genenifA was introduced on the plasmid pCK1. Such derivatives remained Nif- when tested, after aerobic growth on rich agar media, with normal or low glucose, with succinate or with elevated Mo. However, pre-conditioning by aerobic growth on glucose-minimal agar led to subsequent anaerobic expression ofnif in glucose medium from pMF250 in WR19 carrying pCK1. NH 4 + or proline could serve as N-source in the glucose-minimal agar. Maximum activity was about 5% of that ofK. pneumoniae in our assay conditions. Material cross-reacting with anti-serum to the nitrogenase MoFe protein was formed. Nitrogenase activity was not switched off by NH 4 + .P. mirabilis WR19 (pCK1) showed NH 4 + -constitutive temperature-sensitive kanamycin resistance (anif-related phenotype of this plasmid) in aerobic glucose minimal medium. Expression ofnif inP. mirabilis WR19 (pCK1, pMF250) was NH 4 + -repressible despite the constitutivenifA character of pCK1 and introduction of thentrA + plasmid pMM17 did not alter this phenotype. However, pCK1 did not give rise to NH 4 + -constitutive diazotrophy in the wild-typeK. pneumoniae M5al. A construct of WR19 carrying pMF250 and constitutiventrC plasmid (pMD45) remained Nif- even after pre-growth on glucose-minimal media.We conclude (a) thatP. mirabilis forms a gene product functionally equivalent to that ofntrA inK. pneumoniae, (b) that it forms no functional equivalent of thentrC product in our growth conditions. The need for pre-conditioning on aerobic glucose media remains perplexing.Non-common abbreviation NFDM Nitrogen-free-Davis-Mingioli medium  相似文献   

4.
It was known that nitrogenase genes and proteins are well conserved even though they are present in a large variety of phylogenetically diverse nitrogen fixing bacteria. This has lead to the speculation, among others, that nitrogen fixation (nif) genes were spread by lateral gene transfer relatively late in evolution. Here we report an attempt to test this hypothesis.We had previously established the complete nucleotide sequences of the three nitrogenase genes from Bradyrhizobium japonicum, and have now analyzed their homologies (or the amino acid sequence homologies of their gene products) with corresponding genes (and proteins) from other nitrogen fixing bacteria. There was a considerable sequence conservation which certainly reflects the strict structural requirements of the nitrogenase iron-sulfur proteins for catalytic functioning. Despite this, the sequences were divergent enough to classify them into an evolutionary scheme that was conceptually not different from the phylogenetic positions, based on 16S rRNA homology, of the species or genera harboring these genes. Only the relation of nif genes of slow-growing rhizobia (to which B. japonicum belongs) and fast-growing rhizobia was unexpectedly distant. We have, therefore, performed oligonucleotide cataloguing of their 16S rRNA, and found that there was indeed only a similarity of S AB=0.53 between fast- and slowgrowing rhizobia.In conclusion, the results suggest that nif genes may have evolved to a large degree in a similar fashion as the bacteria which carry them. This interpretation would speak against the idea of a recent lateral distribution of nif genes among microorganisms.  相似文献   

5.
A small plasmid containing the entire nif gene cluster of Enterobacter agglomerans 333 as an excisable cassette has been constructed, using pACYC177 as a vector. Two cosmid clones taken from a gene library of E. agglomerans plasmid pEA3 were used as a source of nif genes. A SmaI fragment of peaMS2-2, containing the H,D,K,Y,E,N,X,U,S,V,W,Z,M,L,A and B genes and an ApaI fragment of peaMS2-16 containing nifA,B,Q,F and J were selected to construct pMH2. The resulting plasmid of 33 kb carries the complete nif gene cluster as a nif cassette on a single XbaI fragment. The nif construct pMH2 in Escherichia coli strains has significant nitrogenase activity compared to wild-type E. agglomerans 333. The nif gene cluster construct was found to be very stable.  相似文献   

6.
Summary A clone bank of an indigenous plasmid ofEnterobacter agglomerans containing structural nitrogen-fixation (nif) genes was established in a non-mobilisable, multicopy derivative of the cosmid vector pHC79. The restriction enzyme Bam HI was used to establish the clone bank and it was found that 96% of the clones contained inserts. The clones containingnif-genes were identified by Southern hybridisation usingKlebsiella pneumoniae nif DNA (KpnifHDKY) as the radioactive probe. Thenif-genes ofE. agglomerans showed extensive homology to those ofK. pneumoniae but the restriction enzyme fragment patterns of thenif-genes ofE. agglomerans were different. The plasmid bornenif-genes ofE. agglomerans are clustered as inK. pneumoniae.  相似文献   

7.
念珠藻(Nostoc)固氮过程关键在于固氮酶的催化,而固氮酶复合物中的铁蛋白(NifH)是由高度保守的nifH基因编码的,该基因是进化史上现存最古老的功能基因之一。该研究选取念珠藻属及近缘类群的nifH基因序列共40条,采用最大似然法构建系统发育树;运行PAML4.9软件,对nifH基因编码蛋白进行生物信息学分析,并使用分支模型、位点模型和分支-位点模型检测该基因的选择位点,探讨nifH基因的适应性进化特征。结果表明:(1)最大似然树显示内类群中该研究物种共分为6个分支(A、B、C、D、E和F),其中D和E是2个大的分支,每个大分支中又各包含2个特殊的小分支A、F和B、C,其中F分支包含新疆古尔班通古特沙漠采集到的9株念珠藻,A分支包含F分支及该研究测定序列的4株葛仙米,B分支包含本研究测定序列的4株地皮菜和3株未定种的念珠藻,C分支包含NCBI数据库中下载的5株念珠藻、鱼腥藻序列和本研究测定序列的1株念珠藻。(2)在所分析的3种进化模型中,仅通过分支-位点模型检测出14个统计学上显著的正选择位点,即1F、2S、3S、4T、5A、6F、7F、8I、9S、10C、17I、27Y、29D和31R位点,表明念珠藻属植物的nifH基因发生了适应性变化,分支-位点模型是研究藻类基因适应性进化较好的模型。  相似文献   

8.
Using a high-efficiency DNA cloning vector pJ1–8, a DNA repair geneuvr1 has been self-cloned in bacteriumHaemophilus influenzae. Chimeric plasmid pKuvrl, carrying wild type allele ofuvr1 gene and flanking DNA sequences, specifically complements auvr1 gene mutation in the bacterial chromosome. Auvr1} mutation could be transferred from chromosome byin vivo recombination to pKuvr1 and isolated and designated as plasmid pKuvrl. Plasmid pKuvrl carries a 11.3 kb chromosomal DNA insert which was scanned for the presence of any other DNA repair genes by a novel method of directed mutagenesis. Preliminary analysis of the 3 new mutants isolated by this method supports the notion that the insert contains more than one gene concerned with ultraviolet radiation-sensitivity.  相似文献   

9.
The organisation of the structural genes for nitrogen fixation (nif K,D and H) in a nonheterocystous, filamentous cyanobacteriumPlectonema boryanum has been examined in comparison with a heterocystous cyanobacterium,Anabaena torulosa. DNA from repressed (fix-) cultures ofA. torulosa showed a discontinuousnif region spread over approximately 18 kb, an arrangement typical of the vegetative cells of heterocystous cyanobacteria. The region contained a contiguousnif DH separated fromnif K. by nearly 11 kb DNA. The intervening 11 kb DNA harboured the genexis A involved in the rearrangement ofnif K,D,H to form a cluster during differentiation of heterocysts. DNA fromPlectonema boryanum had a small, contiguousnif KDH cluster spanning a region of approximately 4 kb. DNA homologous to the 11 kb excison with its residentxis A was not present.Nif hybridisation patterns of restriction digests of the DNA isolated from repressed (fix-) or induced (fix--) cultures ofP. boryanum were completely identical. These results unequivocally demonstrate that in the nonheterocystous cyanobacterium, unlike in the heterocystous strains, no gene rearrangement, either within thenif KDII cluster or in its vicinity, accompanies the expression of nitrogenase activity.  相似文献   

10.
Summary Tn5 was introduced into Azotobacter vinelandii on a suicide vector, pGS9. Three Nif- mutants were found to carry Tn5 in nifH (MV6), in nifN (MV22), and in or near nifM (MV21), from the results of hybridisation experiments. For MV21 and MV22 this was also shown by complementation with the nif genes of Klebsiella pneumoniae on pRD1. MV6 failed to synthesis the nifH, D and K gene products. MV6 and MV22 fixed nitrogen in the absence of supplied molybdenum while mutant MV21 did not, suggesting that the nifM gene product may be required for the alternative nitrogenase system synthesised in azotobacteria under conditions of molybdenum deprivation. Reconstitution experiments with mutant extracts showed that MV22 (nifN -) lacked the FeMo cofactor and that MV21 (NifM-) synthesised inactive Fe protein. These biochemical phenotypes are identical to those of the K. pneumoniae nifN and nifM mutants, respectively, demonstrating that these genes have the same function in both K. pneumoniae and A. vinelandii. Complementation of the A. vinelandii mutants with pLAFR1 gene banks of A. vinelandii or a. chroococcum yielded three cosmids of interest. pLV10 complemented UW91, a nifH mutant, and corrected the defect in MV6 after recombination with the mutant genome. It also carried nifD (but not nifK) and about 18 kb of DNA upstream from nifH. pLV1 from the A. vinelandii gene bank complemented both MV21 and MV22 as did pLC11, isolated from the A. chroococcum gene bank. Both pLV1 and pLC11 carried part of the nif cluster downstream of nifHDK which also includes nifEN and nifMVS on about 22 kb of DNA.  相似文献   

11.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

12.
[目的]来自Paenibacillus polymyxa WLY78的固氮基因簇(nifBHDKEfNXhesAnifV)可以转化入Escherichia coli中表达并使重组大肠杆菌合成有固氮活性的固氮酶。本文拟通过对重组大肠杆菌E.coli 78-7的转录组分析以提高其固氮能力。[方法]对固氮条件(无氧无NH4+)和非固氮条件(空气和100 mmol/L NH4+)培养的重组大肠杆菌E.coli 78-7进行转录组分析。[结果]nif基因在两种培养条件下显著表达,说明在重组大肠杆菌中可规避原菌中氧气和NH4+nif基因的负调控。对于固氮过程必需的非nif基因,如参与钼、硫、铁元素转运的modcysfeoAB,这些基因在两种培养条件下表达水平有差异。而参与铁硫簇合成的sufisc基因簇在两条件下表达水平差异巨大。此外,参与氮代谢的基因在固氮条件下显著上调。[结论]重组大肠杆菌中与固氮相关的非nif基因在该菌的固氮过程中具有较大影响,本文对在异源宿主中调高固氮酶活性研究具有重要意义。  相似文献   

13.
An EcoRI fragment of Rhizobium meliloti M2011 which shows homology to Klebsiella pneumoniae DNA carrying nifH and nifD was cloned in both orientations into the Cm gene of plasmid pACYC184 and expressed in Escherichia coli minicells. Fragment specific polypeptides of Mr 12 500, 21 000, 30 000, and 31 000 could be identified. By transposon mutagenesis it was shown that two of them (Mr 12 500 and 21 000) are fusion products with parts of the chloramphenicol acetyltransferase. The other two polypeptides are specified by one coding region which could be mapped by transposon mutagenesis. There are several reasons (homology to Klebsiella nifH, sequence data and molecular weight of the gene products) to assume that this coding region represents the R. meliloti nifH gene (gene for the subunit of the R. meliloti nitrogenase reductase, RmII).  相似文献   

14.
Summary A HindIII (17.0 kb) and an EcoRl restriction fragment (6.9 kb) of Klebsiella pneumoniae nif DNA were cloned on two small amplifiable plasmids, pCM1 and pSA30 respectively. These plasmids between them carry 14 of the 15 known Klebsiella nif genes. The operon for the three structural genes for nitrogenase, nifpHDK, is carried on pSA30: four and five of the remaining six operons are on pCRA37 and pCM1 respectively. All of the nif genes were assigned to endonculease restriction fragments of DNA using the Southern blotting technique (Southern, 1975) with total DNA of nif insertion mutants and radioactive plasmid DNA which contained cloned nif DNA sequences. Their locations were consistent with the genetic map of nif genes. The estimated size of the nif gene cluster was 24 kb.  相似文献   

15.
Two synthetic oligonucleotide probe mixtures, whose sequences were inferred from two separate stretches of amino acids, one closer to the carboxy terminal and the other closer to the amino terminal, of ferredoxin I protein ofAzotobacter vinelandii, were used to select ferredoxin I gene clones from a cosmid gene library ofAzotobacter vinelandii. Restriction analysis revealed that 7 out of 10 selected clones were of the same type. All these clones were found to hybridize withfixABCX genes ofRhizobium meliloti.  相似文献   

16.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

17.
By hybridization experiments with three cloned fragments carrying cellulase genes ofClostridium cellulolyticum, we tried to differentiate 10 cellulolytic mesophilic clostridia, isolated from a municipal solid waste digestor. On the basis of hybridization experiments, three major groups were found among the 10 isolates. The two endoglucanase genes,cel CCA andcel CCB ofC. cellulolyticum, hybridized with nine strains of our isolates, suggesting homology and widespread distribution of these genes. Withcel CCA the strain A31 exhibited a different pattern. In contrast to these nine strains, the strain A11 was found to share no or very weak homology with these two probes, which indicated that this strain of cellulolytic clostridia possesses nonidentical cellulase complex. None of these new strains hybridized withnif genes, indicating that these clostridia did not appear to be nitrogen-fixing bacteria. With other biochemical characteristics, we found that these bacteria appeared to be different from the presently known mesophilic cellulolytic clostridia.  相似文献   

18.
Summary Three new Tn5-mutagenized nif genes of Azospirillum brasilense were characterized. The sizes of the restriction fragments and the restriction maps of the cloned nif DNA regions showed that these nif genes are distinct from those reported earlier, e.g. nifHDK, nifE, nifUS, fixABC. The Nif27 mutant was identified as a nifA type regulatory gene of A. brasilense (a) by genetic complementation with nifA of Klebsiella pneumoniae, (b) by the absence of nitrogenase iron protein in western protein blots and (c) by its inability to activate expression of a nijH-lacZ fusion. The growth characteristics of the three mutants showed that none of them is defective in general nitrogen regulatory (ntr) genes. Also, no homology was detected between the three nif DNA regions of the mutants, cloned in pMS188, pMS189 and pMS197, and the K. pneumoniae nif, gInA or ntr genes. In addition, the fixABC genes of Bradyrhizobium japonicum did not show any hybridization with the cloned Azospirillum genes. Unlike the situation in enteric bacteria, the nif genes in A. brasilense are scattered and span a region of about 65 kb.  相似文献   

19.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

20.
Summary A series of mutants defective in nitrogen fixation (nif) were isolated in Klebsiella pneunoniae strain M5a1. The nif mutations were either located on plasmid pRD1 or on the K. pneumoniae chromosome. A total of 37 plasmid mutants and 28 chromosomal mutants were employed in complementation tests using the acetylene reduction technique. Most mutants could be assigned to one of seven nif cistrons: nifA, nifB, nifD, nifE, nifF, nifH, and nifK.Complementation analysis of two nif deletion mutants confirmed transductional evidence that these strains carry nifB-A-F deletions. One deletion mutant had, in contrast to previous transductional analysis, a functional nifK cistron and presumably is deleted for nifB-A-F-E.Examination of the biochemical phenotype of several mutants suggests that the nifA product has a regulatory function, and nifK, nifD and nifH are most probably the structural genes for nitrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号