首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Base pairing between Escherichia coli RNase P RNA and its substrate.   总被引:14,自引:2,他引:12       下载免费PDF全文
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson-Crick complementarity between two well-conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme-substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.  相似文献   

2.
The hairpin ribozyme   总被引:1,自引:0,他引:1  
The hairpin ribozyme is a naturally occurring RNA that catalyzes sequence-specific cleavage and ligation of RNA. It has been the subject of extensive biochemical and structural studies, perhaps the most detailed for any catalytic RNA to date. Comparison of the structures of its constituent domains free and fully assembled demonstrates that the RNA undergoes extensive structural rearrangement. This rearrangement results in a distortion of the substrate RNA that primes it for cleavage. This ribozyme is known to achieve catalysis employing exclusively RNA functional groups. Metal ions or other catalytic cofactors are not used. Current experimental evidence points to a combination of at least four mechanistic strategies by this RNA: (1) precise substrate orientation, (2) preferential transition state binding, (3) electrostatic catalysis, and (4) general acid base catalysis.  相似文献   

3.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structure and function probing techniques, that any mutation of the substrate base U leads to a docked RNA fold, yet decreases cleavage activity. The docked mutant complex shares with the wild-type complex a common interdomain distance as measured by time-resolved fluorescence resonance energy transfer (FRET) as well as the same solvent-inaccessible core as detected by hydroxyl-radical protection; hence, the mutant complex appears nativelike. FRET experiments also indicate that mutant docking is kinetically more complex, yet with an equilibrium shifted toward the docked conformation. Using 2-aminopurine as a site-specific fluorescent probe in place of the wild-type U, a local structural rearrangement in the substrate is observed. This substrate straining accompanies global domain docking and involves unstacking of the base and restriction of its conformational dynamics, as detected by time-resolved 2-aminopurine fluorescence spectroscopy. These data appear to invoke a mechanism of functional interference by a single base mutation, in which the ribozyme-substrate complex becomes trapped in a nativelike fold preceding the chemical transition state.  相似文献   

4.
Pseudouridine synthase RluE modifies U2457 in a stem of 23 S RNA in Escherichia coli. This modification is located in the peptidyl transferase center of the ribosome. We determined the crystal structures of the C-terminal, catalytic domain of E. coli RluE at 1.2 A resolution and of full-length RluE at 1.6 A resolution. The crystals of the full-length enzyme contain two molecules in the asymmetric unit and in both molecules the N-terminal domain is disordered. The protein has an active site cleft, conserved in all other pseudouridine synthases, that contains invariant Asp and Tyr residues implicated in catalysis. An electropositive surface patch that covers the active site cleft is just wide enough to accommodate an RNA stem. The RNA substrate stem can be docked to this surface such that the catalytic Asp is adjacent to the target base, and a conserved Arg is positioned to help flip the target base out of the stem into the enzyme active site. A flexible RluE specific loop lies close to the conserved region of the stem in the model, and may contribute to substrate specificity. The stem alone is not a good RluE substrate, suggesting RluE makes additional interactions with other regions in the ribosome.  相似文献   

5.
Ribozymes designed to cleave sequences specific to viral RNA may be better antiviral agents than simple antisense oligonucleotides. High catalytic activity with the lowest possible chain length is desired for this purpose. We have synthesized several hammerhead ribozymes that cleave sequences from HIV-1 RNA. On reducing from 20 to 12 the base pairs formed with the substrate, the rate of cleavage at 37 degrees C increased 10-fold. Deletions from the stem/loop structure in the ribozyme also increased the initial rate of reaction.  相似文献   

6.
Large-scale changes in RNA secondary structure, such as those that occur in some of the spliceosomal RNAs during pre-mRNA splicing, have been proposed to be catalyzed by ATP-dependent RNA helicases. Here we show that deproteinized human U4/U6 spliceosomal RNA complex, which has the potential for extensive intermolecular base pairing, contains a cis-acting element that promotes its dissociation into free U4 and U6 RNAs. The destabilzing element corresponds to the bae of putative intramolecular stem in U6 RNA that includes the 3' three-quarters of the molecule. Oligonucleotides expected to compete for U6 RNA 3' stem formation promote assembly of the human U4/U6 RNA complex under conditions that otherwise result in dissociation of the U4/U6 complex. Truncation of the putative 3' stem-forming sequences in U6 RNA by oligonucleotide-directed RNase H cleavage increases the melting temperature of the U4/U6 RNA complex by almost 20 degree C, to a level commensurate with its intermolecular base-pairing potential. We conclude that the stability of the competing human U6 RNA intramolecular 3' stem, combined with a low activation energy for conformational rearrangement, causes the human U4/U6 RNA complex to be intrinsically unstable despite its base-pairing potential. Therefore a helicase activity may not be necessary for disassembly of the human U4/U6 complex during activation of the spliceosome. We propose that a previously identified base-pairing interaction between U6 and U2 RNAs may stabilize the human U4/U6 RNA complex by antagonizing U6 RNA 3' stem formation.  相似文献   

7.
RNase P ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural ptRNA substrate. When covalently linked with a guide sequence, the ribozyme can function as a sequence-specific endonuclease and cleave any target RNA sequences that base pair with the guide sequence. Using a site-directed ultraviolet (UV) cross-linking approach, we have mapped the regions of the ribozyme that are in close proximity to a substrate that contains the mRNA sequence encoding thymidine kinase of human herpes simplex virus 1. Our data suggest that the cleavage site of the mRNA substrate is positioned at the same regions of the ribozyme that bind to the cleavage site of a ptRNA. The mRNA-binding domains include regions that interact with the acceptor stem and T-stem and in addition, regions that are unique and not in close contact with a ptRNA. Identification of the mRNA-binding site provides a foundation to study how RNase P ribozymes achieve their sequence specificity and facilitates the development of gene-targeting ribozymes.  相似文献   

8.
9.
Escherichia coli pseudouridine synthase RluF is dedicated to modifying U2604 in a stem-loop of 23S RNA, while a homologue, RluB, modifies the adjacent base, U2605. Both uridines are in the same RNA stem, separated by ∼ 4 Å. The 3.0 Å X-ray crystal structure of RluF bound to the isolated stem-loop, in which U2604 is substituted by 5-fluorouridine to prevent catalytic turnover, shows RluF distinguishes closely spaced bases in similar environments by a selectivity mechanism based on a frameshift in base pairing. The RNA stem-loop is bound to a conserved binding groove in the catalytic domain. A base from a bulge in the stem, A2602, has folded into the stem, forcing one strand of the RNA stem to translate by one position and thus positioning U2604 to flip into the active site. RluF does not modify U2604 in mutant stem-loops that lack the A2602 bulge and shows dramatically higher activity for a stem-loop with a mutation designed to facilitate A2602 refolding into the stem with concomitant RNA strand translation. Residues whose side chains contact rearranged bases in the bound stem-loop, while conserved among RluFs, are not conserved between RluFs and RluBs, suggesting that RluB does not bind to the rearranged stem loop.  相似文献   

10.
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.  相似文献   

11.
tRNA 3'-processing endoribonucleases (tRNase Z, or 3'-tRNase; EC 3.1.26.11) are enzymes that remove 3'-trailers from pre-tRNAs. An about 12-base-pair stem, a T loop-like structure, and a 3'-trailer were considered to be the minimum requirements for recognition by the long form (tRNase ZL) of tRNase Z; tRNase ZL can recognize and cleave a micro-pre-tRNA or a hooker/target RNA complex that resembles a micro-pre-tRNA. We examined four hook RNAs containing systematically weakened T stems for directing target RNA cleavage by tRNase ZL. As expected, the cleavage efficiency decreased with the decrease in T stem stability, and to our surprise, even the hook RNA that forms no T stem-loop-directed slight cleavage of the target RNA, suggesting that the T stem-loop structure is important but dispensable for substrate recognition by tRNase ZL. To analyze the effect of the T loop on substrate recognition, we compared the cleavage reaction for a micro-pre-tRNA with that for a 12-base-pair double-stranded RNA, which is the same as the micro-pre-tRNA except for the lack of the T loop structure. The observed rate constant value for the double-stranded RNA was comparable with that for the micro-pre-tRNA, whereas the K(d) value for the complex with the double-stranded RNA was much higher than that for the complex with the micro-pre-tRNA. These results suggest that the T loop structure is not indispensable for the recognition, although the interaction between the T loop and the enzyme exists. Cleavage assays for such double-stranded RNA substrates of various lengths suggested that tRNase ZL can recognize and cleave double-stranded RNA substrates that are longer than 5 base pairs and shorter than 20 base pairs. We also showed that double-stranded RNA is not a substrate for the short form of tRNase Z.  相似文献   

12.
RNA structure plays a fundamental role in internal initiation of translation. Picornavirus internal ribosome entry site (IRES) are long, efficient cis-acting elements that recruit the ribosome to internal mRNA sites. However, little is known about long-range constraints determining the IRES RNA structure. Here, we sought to investigate the functional and structural relevance of the invariant apical stem of a picornavirus IRES. Mutation of this apical stem revealed better performance of G:C compared with C:G base pairs, demonstrating that the secondary structure solely is not sufficient for IRES function. In turn, mutations designed to disrupt the stem abolished IRES activity. Lack of tolerance to accept genetic variability in the apical stem was supported by the presence of coupled covariations within the adjacent stem-loops. SHAPE structural analysis, gel mobility-shift and microarrays-based RNA accessibility revealed that the apical stem contributes to maintain IRES RNA structure through the generation of distant interactions between two adjacent stem-loops. Our results demonstrate that a highly interactive structure constrained by distant interactions involving invariant G:C base pairs plays a key role in maintaining the RNA conformation necessary for IRES-mediated translation.  相似文献   

13.
To determine the stem I structure of the human hepatitis delta virus (HDV) ribozyme, which is related to the substrate sequence in the trans -acting system, we kinetically studied stem I length and sequences. Stem I extension from 7 to 8 or 9 bp caused a loss of activity and a low amount of active complex with 9 bp in the trans -acting system. In a previous report, we presented cleavage in a 6 bp stem I. The observed reaction rates indicate that the original 7 bp stem I is in the most favorable location for catalytic reaction among the possible 6-8 bp stems. To test base specificity, we replaced the original GC-rich sequence in stem I with AU-rich sequences containing six AU or UA base pairs with the natural +1G.U wobble base pair at the cleavage site. The cis -acting AU-rich molecules demonstrated similar catalytic activity to that of the wild-type. In trans -acting molecules, due to stem I instability, reaction efficiency strongly depended on the concentration of the ribozyme-substrate complex and reaction temperature. Multiple turnover was observed at 37 degreesC, strongly suggesting that stem I has no base specificity and more efficient activity can be expected under multiple turnover conditions by substituting several UA or AU base pairs into stem I. We also studied the substrate damaging sequences linked to both ends of stem I for its development in therapeutic applications and confirmed the functions of the unique structure.  相似文献   

14.
15.
The coat protein gene in RNA 3 of alfalfa mosaic virus (AMV; genus Alfamovirus, family Bromoviridae) is translated from the subgenomic RNA 4. Analysis of the subgenomic promoter (sgp) in minus-strand RNA 3 showed that a sequence of 37 nt upstream of the RNA 4 start site (nt +1) was sufficient for full sgp activity in an in vitro assay with the purified viral RNA-dependent RNA-polymerase (RdRp). The sequence of nt -6 to -29 could be folded into a potential hairpin structure with a loop represented by nt -16, -17, and -18, and a bulge involving nt -23. By introducing mutations that disrupted base pairing and compensatory mutations that restored base pairing, it was shown that base pairing in the top half of the putative stem (between the loop and bulge) was essential for sgp activity, whereas base pairing in the bottom half of the stem was less stringently required. Deletion of the bulged residue A-23 or mutation of this residue into a C strongly reduced sgp activity, but mutation of A-23 into U or G had little effect on sgp activity. Mutation of loop residues A-16 and A-17 affected sgp activity, whereas mutation of U-18 did not. Using RNA templates corresponding to the sgp of brome mosaic virus (BMV; genus Bromovirus, family Bromoviridae) and purified BMV RdRp, evidence was obtained indicating that also in BMV RNA a triloop hairpin structure is required for sgp activity.  相似文献   

16.
RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping.  相似文献   

17.
We have identified the catalytic domain within the sequence of the negative strand of the satellite RNA of tobacco ringspot virus. Minimum energy RNA folding calculations predict a two dimensional model with four major helical regions which are supported by mutagenesis experiments. This model for the catalytic complex consists of a 50 base catalytic RNA and a 14 base substrate RNA folded together in a type of hairpin two dimensional structure. Part of the recognition region between the catalyst and substrate is two helices of 6 bases and 4 bases respectively. Catalytic activity remains when the bases in these two helices are changed but base pairing is maintained. Thus an appropriately engineered 'hairpin' catalyst is capable of cleaving heterologous RNA.  相似文献   

18.
All class II aminoacyl-tRNA synthetases (aaRSs) are known to be active as functional homodimers, homotetramers, or heterotetramers. However, multimeric organization is not a prerequisite for phenylalanylation activity, as monomeric mitochondrial phenylalanyl-tRNA synthetase (PheRS) is also active. We herein report the structure, at 2.2 A resolution, of a human monomeric mitPheRS complexed with Phe-AMP. The smallest known aaRS, which is, in fact, 1/5 of a cytoplasmic analog, is a chimera of the catalytic module of the alpha and anticodon binding domain (ABD) of the bacterial beta subunit of (alphabeta)2 PheRS. We demonstrate that the ABD located at the C terminus of mitPheRS overlaps with the acceptor stem of phenylalanine transfer RNA (tRNAPhe) if the substrate is positioned in a manner similar to that seen in the binary Thermus thermophilus complex. Thus, formation of the PheRS-tRNAPhe complex in human mitochondria must be accompanied by considerable rearrangement (hinge-type rotation through approximately 160 degrees) of the ABD upon tRNA binding.  相似文献   

19.
Adenovirus virus-associated (VA) RNAI maintains efficient protein synthesis during the late phase of infection by preventing the activation of the double-stranded-RNA-dependent protein kinase, DAI. A secondary structure model for VA RNAI predicts the existence of two stems joined by a complex stem-loop structure, the central domain. The structural consequences of mutations and compensating mutations introduced into the apical stem lend support to this model. In transient expression assays for VA RNA function, foreign sequences inserted into the apical stem were fully tolerated provided that the stem remained intact. Mutants in which the base of the apical stem was disrupted retained partial activity, but truncation of the apical stem abolished the ability of the RNA to block DAI activation in vitro, suggesting that the length and position of the stem are both important for VA RNA function. These results imply that VA RNAI activity depends on secondary structure at the top of the apical stem as well as in the central domain and are consistent with a two-step mechanism involving DAI interactions with both the apical stem and the central domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号