首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.  相似文献   

2.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

3.
B J Frankfort  R Nolo  Z Zhang  H Bellen  G Mardon 《Neuron》2001,32(3):403-414
An outstanding model to study how neurons differentiate from among a field of equipotent undifferentiated cells is the process of R8 photoreceptor differentiation during Drosophila eye development. We show that in senseless mutant tissue, R8 differentiation fails and the presumptive R8 cell adopts the R2/R5 fate. We identify senseless repression of rough in R8 as an essential mechanism of R8 cell fate determination and demonstrate that misexpression of senseless in non-R8 photoreceptors results in repression of rough and induction of the R8 fate. Surprisingly, there is no loss of ommatidial clusters in senseless mutant tissue and all outer photoreceptor subtypes can be recruited, suggesting that other photoreceptors can substitute for R8 to initiate recruitment and that R8-specific signaling is not required for outer photoreceptor subtype assignment. A genetic model of R8 differentiation is presented.  相似文献   

4.
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting.  相似文献   

5.
6.
7.
8.
Photoreceptors in the Drosophila eye project their axons retinotopically to targets in the optic lobe of the brain. The axons of photoreceptor cells R1-R6 terminate in the first optic ganglion, the lamina, while R7 and R8 axons project through the lamina to terminate in distinct layers of the second ganglion, the medulla. Here we report the identification of the gene brakeless (bks) and show that its function is required in the developing eye specifically for the lamina targeting of R1-R6 axons. In mosaic animals lacking bks function in the eye, R1-R6 axons project through the lamina to terminate in the medulla. Other aspects of visual system development appear completely normal: photoreceptor and lamina cell fates are correctly specified, R7 axons correctly target the medulla, and both correctly targeted R7 axons and mistargeted R1-R6 axons maintain their retinotopic order with respect to both anteroposterior and dorsoventral axes. bks encodes two unusually hydrophilic nuclear protein isoforms, one of which contains a putative C(2)H(2) zinc finger domain. Transgenic expression of either Bks isoform is sufficient to restore the lamina targeting of R1-R6 axons in bks mosaics, but not to retarget R7 or R8 axons to the lamina. These data demonstrate the existence of a lamina-specific targeting mechanism for R1-R6 axons in the Drosophila visual system, and provide the first entry point in the molecular characterization of this process.  相似文献   

9.
10.
The regulatory gene hairy is expressed and required during early embryogenesis to control segmentation gene expression properly and during larval and pupal development to control the pattern of certain adult sensory structures. We have found the hairy protein to be expressed transiently during two stages of eye imaginal disc development, including all cells immediately anterior to the morphogenetic furrow that traverses the developing eye disc, and again in the presumptive R7 photoreceptor cells of the developing ommatidia. This pattern is conserved in a significantly diverged Drosophila species. We show that, surprisingly, ommatidia formed by homozygous hairy- mutant clones are apparently normal, indicating that hairy function in the eye is dispensable. However, we do find that ectopic expression of hairy causes numerous structural abnormalities and the alteration of cell fates. Thus, proper regulation of hairy is still essential for normal eye development. We suggest that the loss of hairy function may be compensated by other regulatory proteins, as has been observed previously for several structurally and functionally related genes involved in sensory organ development. The effects of ectopic hairy expression may result from interactions with proneural genes involved in the development of the eye and other sensory organs.  相似文献   

11.
Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor). By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.  相似文献   

12.
The compound eye of Drosophila melanogaster consists of about 750 ommatidia (unit eyes). Each ommatidium is composed of about 20 cells, including lens-secreting cone cells, pigment cells, a bristle cell and eight photoreceptors (PRs) R1-R8 2. The PRs have specialized microvillar structures, the rhabdomeres, which contain light-sensitive pigments, the Rhodopsins (Rhs). The rhabdomeres of six PRs (R1-R6) form a trapezoid and contain Rh1 3 4. The rhabdomeres of R7 and R8 are positioned in tandem in the center of the trapezoid and share the same path of light. R7 and R8 PRs stochastically express different combinations of Rhs in two main subtypes5: In the ''p'' subtype, Rh3 in pR7s is coupled with Rh5 in pR8s, whereas in the ''y'' subtype, Rh4 in yR7s is associated with Rh6 in yR8s 6 7 8.Early specification of PRs and development of ommatidia begins in the larval eye-antennal imaginal disc, a monolayer of epithelial cells. A wave of differentiation sweeps across the disc9 and initiates the assembly of undifferentiated cells into ommatidia10-11. The ''founder cell'' R8 is specified first and recruits R1-6 and then R7 12-14. Subsequently, during pupal development, PR differentiation leads to extensive morphological changes 15, including rhabdomere formation, synaptogenesis and eventually rh expression.In this protocol, we describe methods for retinal dissections and immunohistochemistry at three defined periods of retina development, which can be applied to address a variety of questions concerning retinal formation and developmental pathways. Here, we use these methods to visualize the stepwise PR differentiation at the single-cell level in whole mount larval, midpupal and adult retinas (Figure 1).  相似文献   

13.
The development of the Drosophila R7 photoreceptor cell is determined by a specific inductive interaction between the R8 photoreceptor cell and a single neighboring precursor cell. This process is mediated by bride of sevenless (boss), a cell-surface bound ligand, and the sevenless (sev) tyrosine kinase receptor. The boss ligand is expressed specifically on the surface of the R8 cell, whereas the sev receptor is expressed on 5 cells contacting the developing R8 cell and other cells not in contact with R8. By altering the spatial and temporal expression of boss, we demonstrate that sev-expressing cells that do not contact R8 can assume an R7 cell fate. By contrast, the sev-expressing precursor cells to the R1-R6 photoreceptor cells that do contact R8 are nonresponsive to the inductive cue. Using the rough and Nspl mutations, we demonstrate that an early commitment to an R1-R6 cell fate blocks the pathway of sev activation in these cells.  相似文献   

14.
With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. Instead, creation of the late-forming imaginal discs in Manduca appears to be controlled by unidentified endocrine factors whose activation is regulated by the nutritional state of the animal.  相似文献   

15.
16.
17.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

18.
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.  相似文献   

19.
20.
The Drosophila melanogaster eye disc is a powerful system that can be used to study many different biological processes. It contains approximately 800 separate eye units, termed ommatidia1. Each ommatidium contains eight neuronal photoreceptors that develop from undifferentiated cells following the passage of the morphogenetic furrow in the third larval instar2. Following the sequential differentiation of the photoreceptors, non-neuronal cells develop, including cone and pigment cells, along with mechanosensory bristle cells3. Final differentiation processes, including the structured arrangement of all the ommatidial cell types, programmed cell death of undifferentiated cell types and rhodopsin expression, occurs through the pupal phase4-7. This technique focuses on manipulating the pupal eye disc, providing insight and instruction on how to dissect the eye disc during the pupal phase, which is inherently more difficult to perform than the commonly dissected third instar eye disc. This technique also provides details on immunostaining to allow the visualization of various proteins and other cell components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号