首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The replication of wheat dwarf virus (WDV) in protoplasts derived from a Triticum monococcum suspension cell system was investigated. The production of circular viral double-stranded DNA (dsDNA) forms consistent with the replication of the viral genome was observed. In comparison to whole plants, the production of viral single-stranded DNA (ssDNA) was reduced, possibly due to only low levels of viral coat protein being produced in the protoplasts. Mutations introduced into the viral coat protein open reading frame (ORF) did not affect the ability of the viral DNA to replicate, and a deletion of ca. 400 bp was tolerated. However, these mutations abolished the infectivity of the viral genome when agroinoculated onto wheat plants, providing evidence that, contrary to the case for the bipartite geminiviruses, the coat protein is essential for infection by WDV.  相似文献   

2.
The intergenic region of the circular single-stranded DNA genome of geminiviruses contains a sequence potentially able to fold into a stem-loop structure. This sequence has been reported to be involved in viral replication by serving as the origin for rolling-circle replication. However, in wheat dwarf virus (WDV) a deletion of 128 bp, removing this sequence, surprisingly does not prevent de novo viral DNA synthesis, but instead abrogates the processing of replicative intermediates into monomeric genomes. This deletion mutant permitted us to study the initiation of viral-strand DNA synthesis independently from its termination and also to identify the sequence within which rolling-circle DNA replication of WDV begins. We have mapped the initiation site of replication to a pentanucleotide, TACCC, a sequence that occurs twice in the large intergenic region of WDV: it is found in the right half of the stem-loop sequence and again 170 bases upstream where it is part of a 15 nucleotide sequence highly homologous to the right half of the stem-loop sequence. Here we show that viral-strand DNA synthesis efficiently initiates at both sequences.  相似文献   

3.
The nucleotide sequence of cloned wheat dwarf virus DNA   总被引:15,自引:3,他引:12       下载免费PDF全文
Restriction analysis and cloning of virus-specific double-stranded DNA isolated from plants infected with wheat dwarf virus (WDV) indicated that the virus genome, like that of maize streak virus (MSV), consists of a single DNA circle. The complete nucleotide sequence of cloned WDV DNA (2749 nucleotides) has been determined. Comparison of the potential coding regions in WDV DNA with those in the DNA of two strains of MSV suggests that these viruses encode at least two functional proteins, the coat protein read in the virion (+) DNA sense and a composite protein, formed from two open reading regions, in the complementary (-) DNA sense. Although WDV and MSV are serologically unrelated their coat proteins showed 35% direct amino acid sequence and their DNAs showed 46% nucleotide sequence homology. There was too little homology between the DNAs of WDV and those of two geminiviruses with bipartite genomes, cassava latent virus (CLV) and tomato golden mosaic virus (TGMV), to align the sequences. However comparison of the amino acid sequences of predicted proteins of WDV, MSV, TGMV and CLV revealed clear relationships between these viruses and suggested that the monopartite and the bipartite geminiviruses have a common ancestral origin. Four inverted repeat sequences which have the potential to form hairpin structures of deltaG >/= -14 kcal/mol were detected in WDV DNA. The sequence TAATATTAC present in the loop of one of these hairpins is conserved in similar putative structures in MSV DNA and in both DNA components of CLV and TGMV and may function as a recognition sequence for a protein involved in virus DNA replication.  相似文献   

4.
Tomato golden mosaic virus (TGMV) belongs to the geminivirus subgroup that is characterized by a split genome consisting of two single-stranded circular DNAs. The TGMV A genome component encodes the virus coat protein as well as all of the functions necessary for viral DNA replication. Analysis of the nucleotide sequence indicates that the TGMV A component has, in addition to the coat protein encoding ORF, four overlapping open reading frames (ORFs) with the potential to encode proteins of greater than 10 kD. We have investigated the functions of these putative proteins in both symptom formation and DNA replication by creating mutations in each of the ORFs. Our results show that the AL4 ORF, which is encoded within the N-terminal region of ORF AL1, is not essential for normal virus infection. In contrast, we find that disruption of the AL3 ORF results in delay and attenuation of symptom formation. We also report that the products of the AL1 and AL2 ORFs are absolutely required for symptom formation. Studies of DNA replication show that only the AL1 open reading frame is essential for viral DNA synthesis. The significance of these results for the development of vectors from the geminiviruses is discussed.  相似文献   

5.
Wheat dwarf virus (WDV) is a geminivirus that infects monocotyledonous plants. To exploit the potential of WDV as a replicative gene vector, we developed a transient replication and expression system based on the transfection of protoplasts derived from Triticum monococcum suspension culture cells. Cloned genomic copies of various WDV isolates as well as mutants constructed in vitro were introduced into the protoplasts and assayed for their ability to replicate. As a result, regions of the WDV genome necessary or dispensable for the viral DNA replication could be defined. In addition, the gene encoding the viral capsid protein was replaced by three different bacterial marker genes, neomycin phosphotransferase, chloramphenicol acetyltransferase, and beta-galactosidase. The beta-galactosidase gene doubled the size of the WDV genome. The replication of the recombinant WDV genomes and the expression of these genes were monitored in suspension culture cells of T. monococcum. The potential of replicative expression vectors based on the WDV genome is discussed.  相似文献   

6.
7.
Replication of the single-stranded DNA genome of plant geminiviruses follows a rolling circle mechanism. It strictly depends on a 'rolling circle replication initiator protein', the M(r) 41 kDa viral Rep protein, encoded by the C1 or AC1 genes. Using wheat dwarf virus (WDV) and tomato yellow leaf curl virus (TYLCV) as examples, we show that not only the full-size Rep proteins, but also a putative 30 kDa translation product of WDV open reading frame C1-N as well as an artificially shortened 24 kDa Rep of TYLCV, cleave and join single-stranded origin DNA in vitro. Thus the pivotal origin recognition and processing activities of geminivirus Rep proteins must be mediated by the amino-terminal domain of Rep.  相似文献   

8.
Delimitation of essential genes of cassava latent virus DNA 2   总被引:16,自引:3,他引:13       下载免费PDF全文
Insertion and deletion mutagenesis of both extended open reading frames (ORFs) of cassava latent virus DNA 2 destroys infectivity. Infectivity is restored by coinoculating constructs that contain single mutations within different ORFs. Although frequent intermolecular recombination produces dominant parental-type virus, mutants can be retained within the virus population indicating that they are competent for replication and suggesting that rescue can occur by complementation of trans acting gene products. By cloning specific fragments into DNA 1 coat protein deletion vectors we have delimited the DNA 2 coding regions and provide substantive evidence that both are essential for virus infection. Although a DNA 2 component is unique to whitefly-transmitted geminiviruses, the results demonstrate that neither coding region is involved solely in insect transmission. The requirement for a bipartite genome for whitefly-transmitted geminiviruses is discussed.  相似文献   

9.
Geminiviruses are plant DNA viruses with small genomes whose replication, except for the viral replication protein (Rep), depends on host proteins and, in this respect, are analogous to animal DNA tumor viruses, e.g. SV40. The mechanism by which these animal viruses create a cellular environment permissive for viral DNA replication involves the binding of a virally encoded oncoprotein, through its LXCXE motif, to the retinoblastoma protein (Rb). We have identified such a LXCXE motif in the Rep protein of wheat dwarf geminivirus (WDV) and we show its functional importance during viral DNA replication. Using a yeast two-hybrid system we have demonstrated that WDV Rep forms stable complexes with p130Rbr2, a member of the Rb family of proteins, and single amino acid changes within the LXCXE motif abolish the ability of WDV Rep to bind to p130Rbr2. The LXCXE motif is conserved in other members of the same geminivirus subgroup. The presence of an intact Rb binding motif is required for efficient WDV DNA replication in cultured wheat cells, strongly suggesting that one of the functions of WDV Rep may be the linking between viral and cellular DNA replication cycles. Our results point to the existence of a Rb-like protein(s) in plant cells playing regulatory roles during the cell cycle.  相似文献   

10.
11.
12.
13.
The entire genome of single component geminiviruses such as maize streak virus (MSV) consists of a single-stranded circular DNA of ~2.7 kb. Although this size is sufficient to encode only three average sized proteins, the virus is capable of causing severe disease of many monocots with symptoms of chlorosis and stunting. We have identified viral gene functions essential for systemic spread and symptom development during MSV infection. Deletions and gene replacement mutants were created by site-directed mutagenesis and insertion between flanking MSV or reporter gene sequences contained in Agrobacterium T-DNA derived vectors. Following Agrobacterium-mediated inoculation of maize seedlings, the mutated MSV DNAs were excised from these binary vectors by homologous recombination within the flanking sequences. Our analyses show that the capsid gene of MSV, while not required for replication, is essential for systemic spread and subsequent disease development. The `+' strand open reading frame (ORF) located immediately upstream from the capsid ORF and predicted to encode a 10.9 kd protein was also found to be dispensable for replication but essential for systemic spread. By this analysis, MSV sequences that support autonomous replication were localized to a 1.7 kb segment containing the two viral intergenic regions and two overlapping complementary `-' strand ORFs. Despite the inability of the gene replacement mutants to spread systemically, both inoculated and newly developed leaves displayed chlorotic patterns similar to the phenotype observed in certain developmental mutants of maize. The similarity of the MSV mutant phenotype to these developmental mutants is discussed.  相似文献   

14.
A polypeptide of approximately 11 000 daltons (11 kDa protein) encoded by an open reading frame (10.9 ORF) from the virion sense of maize streak virus (MSV) DNA has been detected among the products of in vitro translation reactions programmed with RNA from infected maize plants and also in total protein extracts from infected leaves. The 11 kDa protein has not been detected in virions and is therefore proposed to have a nonstructural role.Viral DNA with an additional in-frame translation stop codon in the 10.9 ORF was not infectious when transmitted to maize plants via Agrobacterium tumefaciens agroinfection, suggesting that the 10.9 ORF may be essential for virus function. Computer comparison data show that equivalent ORFs in wheat dwarf virus (WDV) and digitaria streak virus (DSV) have some sequences in common with the 10.9 ORF of MSV. Further-more, the absence of similar sequences in geminiviruses which infect dicotyledonous plants suggests that the 11 kDa protein and its putative homologs in WDV and DSV have a function necessary only for those geminiviruses which infect the Gramineae.The significance of the 11 kDa protein in relation to expression of the virion sense DNA of MSV is discussed.  相似文献   

15.
16.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

17.
Pseudomonas aeruginosa phage EL is a dsDNA phage related to the giant phiKZ-like Myoviridae. The EL genome sequence comprises 211,215 bp and has 201 predicted open reading frames (ORFs). The EL genome does not share DNA sequence homology with other viruses and micro-organisms sequenced to date. However, one-third of the predicted EL gene products (gps) shares similarity (Blast alignments of 17-55% amino acid identity) with phiKZ proteins. Comparative EL and phiKZ genomics reveals that these giant phages are an example of substantially diverged genetic mosaics. Based on the position of similar EL and phiKZ predicted gene products, five genome regions can be delineated in EL, four of which are relatively conserved between EL and phiKZ. Region IV, a 17.7 kb genome region with 28 predicted ORFs, is unique to EL. Fourteen EL ORFs have been assigned a putative function based on protein similarity. Assigned proteins are involved in DNA replication and nucleotide metabolism (NAD+-dependent DNA ligase, ribonuclease HI, helicase, thymidylate kinase), host lysis and particle structure. EL-gp146 is the first chaperonin GroEL sequence identified in a viral genome. Besides a putative transposase, EL harbours predicted mobile endonucleases related to H-N-H and LAGLIDADG homing endonucleases associated with group I intron and intein intervening sequences.  相似文献   

18.
The geminiviruses are a unique group of higher plant viruses that are composed of twin isometric particles which contain circular, single-stranded DNA. Tomato golden mosaic virus (TGMV), a whitefly-transmitted agent, belongs to the subgroup of geminiviruses whose members possess a bipartite genome. The TGMV A genome component has the capacity to encode at least four proteins. One of these is the viral coat protein, as inferred by homology with coat-protein, genes of other geminiviruses and by the observation of typical geminate particles in transgenic plants that contain inserts of TGMV A DNA. We have investigated the role of the coat protein in TGMV replication and report here that its coding sequence may be interrupted or substantially deleted without loss of infectivity. However, certain coat-protein mutants showed reproducible delays in time of symptom appearance as well as reduced symptom development, when inoculated onto transgenic Nicotiana benthamiana plants containing the TGMV B component. The most attenuated symptoms were seen with a mutant in which the coat-protein coding sequence was almost entirely deleted. The significance of these findings for the development of plant vectors from TGMV DNA is discussed.  相似文献   

19.
20.
Geminiviruses encode a few proteins and depend on cellular factors to complete their replicative cycle. As a way to understand geminivirus-host interactions, we have searched for cellular proteins which interact with viral proteins. By using the yeast two-hybrid technology and the wheat dwarf geminivirus (WDV) RepA protein as a bait, we have isolated a family of proteins which we termed GRAB (for Geminivirus Rep A-binding). We report here the molecular characterization of two members, GRAB1 and GRAB2. We have found that the 37 C-terminal amino acids of RepA are required for interaction with GRAB proteins. This region contains residues conserved in an equivalent region of the RepA proteins encoded by other viruses of the WDV subgroup. The N-terminal domain of GRAB proteins is necessary and sufficient to interact with WDV RepA. GRAB proteins contain an unique acidic C-terminal domain while their N-terminal domain, of ca. 170 amino acids, are highly conserved in all of them. Interestingly, this conserved N-terminal domain of GRAB proteins exhibits a significant amino acid homology to the NAC domain present in proteins involved in plant development and senescence. GRAB1 and GRAB2 mRNAs are present in cultured cells and roots but are barely detectable in leaves. GRAB expression inhibits WDV DNA replication in cultured wheat cells. Our studies highlight the importance that the pathway(s) mediated by GRAB proteins, as well as by other NAC domain-containing proteins, might have on geminivirus DNA replication in connection to plant growth, development and senescence pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号