首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nitration in neurodegeneration: deciphering the "Hows" "nYs"   总被引:3,自引:0,他引:3  
Reynolds MR  Berry RW  Binder LI 《Biochemistry》2007,46(25):7325-7336
Recent literature has ushered in a new awareness of the diverse post-translational events that can influence protein folding and function. Among these modifications, protein nitration is thought to play a critical role in the onset and progression of several neurodegenerative diseases. While previously considered a late-stage epiphenomenon, nitration of protein tyrosine residues appears to be an early event in the lesions of amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The advent of highly specific biochemical and immunological detection methods reveals that nitration occurs in vivo with biological selectively and site specificity. In fact, nitration of only a single Tyr residue is often sufficient to induce profound changes in the activity of catalytic proteins and the three-dimensional conformation of structural proteins. Presumably, nitration modifies protein function by altering the hydrophobicity, hydrogen bonding, and electrostatic properties within the targeted protein. Most importantly, however, nitrative injury may represent a unifying mechanism that explains how genetic and environmental causes of neurological disease manifest a singular phenotype. In this review and synthesis, we first examine the pathways of protein nitration in biological systems and the factors that influence site-directed nitration. Subsequently, we turn our attention to the structural implications of site-specific nitration and how it affects the function of several neurodegeneration-related proteins. These proteins include Mn superoxide dismutase and neurofilament light subunit in amyotrophic lateral sclerosis, alpha-synuclein and tyrosine hydroxylase in Parkinson's disease, and tau in Alzheimer's disease.  相似文献   

5.
Collier R 《CMAJ》2012,184(2):E117-E118
  相似文献   

6.
Gundara JS  Robinson BG  Sidhu SB 《Autophagy》2011,7(12):1553-1554
MicroRNAs (miRs) are increasingly important diagnostic and prognostic markers in cancer but have not been defined in medullary thyroid carcinoma (MTC). MiR microarray profiling was performed on 19 primary MTC tumors, validated with qPCR in 45 cases and correlated with clinical outcomes. MiRs-183 and 375 were overexpressed and miR-9* underexpressed in sporadic vs. hereditary MTC (SMTC; HMTC). MiR-183 and 375 overexpression predicted lateral nodal metastases, residual disease, distant metastases and mortality. MiR-183 knockdown in an MTC cell line (TT cells) reduced cellular proliferation in association with elevated LC3B expression. This is suggestive of increased autophagic flux and potential cell death via autophagy induction. MiRs may subsequently be shown to serve as efficacious therapeutic strategies in MTC with a mechanism based upon autophagy.  相似文献   

7.
A detailed and precise picture is being pieced together about how the pattern of digits develops in vertebrate limbs. What is particularly exciting is that it will soon be possible to trace the process all the way from establishment of a signalling centre in a small bud of undifferentiated cells right through to final limb anatomy. The development of the vertebrate limb is a traditional model in which to explore mechanisms involved in pattern formation, and there is accelerating knowledge about the genes involved. One reason why the limb is holding its place in the post-genomic age is that it is rich in pre-genomic embryology. Here, we will focus on recent findings about the aspect of vertebrate limb development concerned with digit pattern across the anteroposterior axis of the limb. This process is controlled by a signalling region in the early limb bud known as the polarizing region. Interactions between polarizing region cells and other cells in the limb bud ensure that a thumb develops at one edge of the hand (anterior) and a little finger at the other (posterior).  相似文献   

8.
9.
Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal''s psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy.

Authors Summary

In our interaction with the environment we are flooded with a stream of numerous objects and events. Our brain needs to understand the nature of these complex and rich stimuli in order to react. Research has shown ways in which a ‘what’ stimulus was presented can be encoded by the neural responses. However, to understand ‘what was the nature of the stimulus’ the brain needs to know ‘when’ the stimulus was presented. Here, we investigated how the onset of visual stimulus can be signalled by the retina to higher brain regions. We used archer fish as a framework to test the notion that the answer to the question of ‘when’ something has been presented lies within the larger cell population, whereas the answer to the question of ‘what’ has been presented may be found at the single-neuron level. The utility of the archer fish as model animal stems from its remarkable ability to shoot down insects settling on the foliage above the water level, and its ability to distinguish between artificial targets. Thus, the archer fish can provide the fish equivalent of a monkey or a human that can report psychophysical decisions.  相似文献   

10.
Simpson L 《Protist》2006,157(4):2404-362
  相似文献   

11.
12.
On "the contractile fibroblast"   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
15.
Chromatin is a highly complex mixture of proteins and DNA that is involved in the regulation and coordination of gene expression within the eukaryotic nucleus. Changes in chromatin structure can convey heritable changes of gene activity in response to external stimuli without altering the primary DNA sequence. This epigenetic inheritance of particular traits very likely plays a major role during evolutionary processes. It is however, still ill-defined how this non DNA-mediated inheritance is accomplished at a molecular level. The advent of new methods to systematically study genome-wide changes in chromatin condensation, DNA methylation levels, RNA synthesis and the association of specific proteins or protein modifications now allows a thorough investigation of changes in chromatin structure and function in response to environmental alterations. We would like to review some of these global approaches and to introduce the term "chromatomics" for the systematic analysis of the DNA, RNA and protein content of the genetic material in the eukaryotic nucleus.  相似文献   

16.
Both qualitative and quantitative comparative studies of "dark" and "light" pinealocytes of the porcine pineal gland have been carried out. These cells differ from each other in their electronic density of cytoplasm, shape of nucleus, the structure of membrane bound dense bodies and the number of microtubules and smooth endoplasmic reticulum. The membrane bound dense bodies--characteristic structures of pig pinealocytes as well dense core vesicles occur in both types of cells. The relative volume of the majority of the cells' organellae apart from the Golgi apparatus, also do not show any significant difference. The results obtained support a functional basis for pinealocyte differentiation in the porcine pineal gland.  相似文献   

17.
The distribution in the human genome of the largest family of mobile elements, the Alu sequences, has been investigated for the past 30 years, and the vast majority of Alu sequences were shown to have the highest density in GC-rich isochores. Ten years ago, it was discovered, however, that the small "youngest" (most recently transposed) Alu families had a strikingly different distribution compared with the "old" families. This raised the question as to how this change took place in evolution. We solved what was considered to be a "mystery" by 1) revisiting our previous results on the integration and stability of retroviral sequences, and 2) assessing the densities of acceptor sites TTTT/AA in isochore families. We could conclude 1) that the open state of chromatin structure plays a crucial role in allowing not only the initial integration of retroviral sequences but also that of the youngest Alu sequences, and 2) that the distribution of old Alus can be explained as due to Alu sequences being unstable in the GC-poor isochores but stable in the compositionally matching GC-rich isochores, again in line with what happens in the case of retroviral sequences.  相似文献   

18.
If one looks back on the history of American research ethics, a bold pattern emerges. Since World War II, about every twenty years or so a breach of the social contract between investigators and human research subjects galvanizes public and professional interest in the ethical foundations and oversight mechanisms governing research with humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号