首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ethylene in seed dormancy and germination   总被引:17,自引:0,他引:17  
The role of ethylene in the release of primary and secondary dormancy and the germination of non-dormant seeds under normal and stressed conditions is considered. In many species, exogenous ethylene, or ethephon – an ethylene-releasing compound - stimulates seed germination that may be inhibited because of embryo or coat dormancy, adverse environmental conditions or inhibitors (e.g. abscisic acid, jasmonate). Ethylene can either act alone, or synergistically or additively with other factors. The immediate precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), may also improve seed germination, but usually less effectively. Dormant or non-dormant inhibited seeds have a lower ethylene production ability, and ACC and ACC oxidase activity than non-dormant, uninhibited seeds. Aminoethoxyvinyl-glycine (AVG) partially or markedly inhibits ethylene biosynthesis in dormant or non-dormant seeds, but does not affect seed germination. Ethylene binding is required in seeds of many species for dormancy release or germination under optimal or adverse conditions. There are examples where induction of seed germination by some stimulators requires ethylene action. However, the mechanism of ethylene action is almost unknown.
The evidence presented here shows that ethylene performs a relatively vital role in dormancy release and seed germination of most plant species studied.  相似文献   

4.
5.
6.
We report the isolation by differential display of a novel tomato ethylene-responsive cDNA, designated ER5. RT-PCR analysis of ER5 expression revealed an early (15 min) and transient induction by ethylene in tomato fruit, leaves and roots. ER5 mRNA accumulated during 2 h of ethylene treatment and thereafter underwent a dramatic decline leading to undetectable expression after 5 h of treatment. The full-length cDNA clone of 748 bp was obtained and DNA sequence analysis showed strong homologies to members of the atypical hydrophobic group of the LEA protein family. The predicted amino acid sequence shows 67%, 64%, 64%, and 61% sequence identity with the tomato Lemmi9, soybean D95-4, cotton Lea14-A, and resurrection plant pcC27-45 gene products, respectively. As with the other members of this group, ER5 encodes a predominantly hydrophobic protein. Prolonged drought stress stimulates ER5 expression in leaves and roots, while ABA induction of this ethylene-responsive clone is confined to the leaves. The use of 1-MCP, an inhibitor of ethylene action, indicates that the drought induction of ER5 is ethylene-mediated in tomato roots. Finally, wounding stimulates ER5 mRNA accumulation in leaves and roots. Among the Lea gene family this novel clone is the first to display an ethylene-regulated expression.  相似文献   

7.
The germination of lettuce seeds (Lactuca sativa L., cv. Premier Great Lakes) was significantly inhibited by high temperature (32 C), 0.1 mM abscisic acid or 0.4 M mannitol. Ethylene (16 μl/1 of air) partially reversed the dormancy induced by all three inhibitors but only in the presence of 1 mM gibberellic acid (GA) or light. Neither ethylene plus GA nor ethylene plus light were able to promote germination when thermal inhibition was imposed at 36 C. Addition of 0.01 mM kinetin to the ethylene plus GA or light reversed thermodormancy at 36 C. The dormancy imposed by abscisic acid was also reversed by kinetin. Kinetin was unable to reverse the osmotic dormancy imposed by mannitol. The reversal of osmotic dormancy by ethylene or ethylene plus GA was actually inhibited by kinetin but only in the light. Kinetin apparently stimulates cotyledonary growth in the presence of light, and this growth may compete for certain metabolites critical to radicle growth and subsequent germination. Kinetin and ethylene, as demonstrated primarily in the thermodormancy at 36 C and in osmotic dormancy, appear to regulate a common event(s) leading to germination but through mechanisms unique to each respective growth regulator. The regulation of germination by ethylene is absolutely dependent upon an interaction with GA and/or light.  相似文献   

8.
9.
Mature seeds of apple (Mallus domestica Borb. cv. Antonówka) are dormant and do not germinate unless their dormancy is removed by several weeks of moist-cold treatment. We investigated the effect of short-term (3 h) nitric oxide (NO) pretreatment on breaking of apple embryonic dormancy expressed as inhibition of germination and morphological abnormalities of young seedlings. Imbibition of embryos isolated from dormant apple seeds with sodium nitroprusside (SNP) or S-nitroso,N-acetyl penicillamine (SNAP) as NO donors resulted in enhanced germination. Moreover, NO treatment removed morphological abnormalities of seedlings developing from dormant embryo. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3 oxide (cPTIO) removed the above effects. NO-mediated breaking of embryonic dormancy correlated well with enhanced ethylene production. Inhibitor of ethylene synthesis (AOA) reversed the stimulatory effect of NO donors on embryo germination. Additionally SNP reduced embryo sensitivity to exogenously applied ABA ensuing dormancy breakage. We can conclude that NO acts as a regulatory factor included in the control of apple embryonic dormancy breakage by stimulation of ethylene biosynthesis.  相似文献   

10.
11.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

12.
13.
The germination of lettuce (Lactuca sativa L.) seeds was greatly reduced when the seeds were heated at 97°C for 30 h prior to imbibition. This dormancy was effectively released when ethylene (1–100 ppm) or benzyladenine (BA) (0.005–0.05 mM) was applied during the imbibition period. Ethylene was not required during the early part of imbibition, but was essential during the period immediately prior to radicle protrusion. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) (0.1–10 mM) stimulated germination, but was not as effective as ethylene or cytokinin treatment. During the germination of nondormant lettuce seeds, ethylene production increased rapidly and reached a peak at 24 h, which coincided with the emergence of the radicle, and then declined; the level of ACC increased as ethylene production rate increased, but remained at a high level after radicle protrusion. In heat-pretreated dormant lettuce seeds, the increases in percent germination, ethylene production, and ACC levels were all delayed and lower than those of nondormant seeds, and these increases were accelerated by treatment with ethylene or cytokinin.  相似文献   

14.
The embryonic axes of Spanish-type peanut seeds that do not exhibit dormancy to any extent were found to produce ethylene during germination. Virginia-type peanut seeds of the extremely dormant variety NC-13 produced low levels of ethylene when imbibed but not germinating. Treatments that released dormancy of NC-13 peanut seeds resulted in increased ethylene production by the embryonic axis. The estimated internal concentration of ethylene in Virginia-type peanut seeds was 0.4 ppm at 24 hr of germination. Fumigation with an external concentration of 3.0 to 3.5 ppm for 6 hr was sufficient to break dormancy of Virginia-type peanut seeds. These results suggest that ethylene is associated with the germination processes of non-dormant seeds and participates in the breaking of seed dormancy of dormant peanut varieties.  相似文献   

15.
16.
17.
Primary dormancy in A. retroflexus seeds wascompletely broken by dry storage or ethylene treatment and partially removedwith GA3. Norbornadiene counteracted the dormancy breaking action ofethylene and GA3. The GA3 effect was lowered bycobaltous ions. ABA increased the ethylene requirement in primary dormant seeds.Dormant seeds had a similar or different ability to produce ethylene and ACCoxidase in vivo activity than did non-dormant seeds,depending on the period of incubation. Dormant seeds contained less endogenousACC than non-dormant seeds. Thus, ethylene seems to play an essential role inthe release of primary dormancy in A. retroflexus seeds.Ethylene also participates in the release of dormancy achieved by GA3treatment. The results indicate that both ethylene biosynthesis and action isinvolved in the control of primary dormancy in Amaranthusretroflexus seeds.  相似文献   

18.
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.  相似文献   

19.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

20.
Transition from primary dormancy to secondary dormancy in cocklebur seeds   总被引:1,自引:1,他引:0  
Abstract The transition from primary dormancy to secondary dormancy was examined using upper cocklebur (Xanthium pennsylvanicum Wallr.) seeds. The non-after-ripened seeds with primary dormancy responded to chilling, anoxia, KCN, and NaN3 with an increase in germination. However, their maximal responses to these treatments only occurred after a period of water imbibition, probably a reflection of the increasing growth potential of the axial tissue which was accompanied by the increase in the capacities of respiration and ethylene production. On the other hand, the establishment of secondary dormancy was accompanied by a decrease in respiration and ethylene production of seeds, and in the growth potential of both axial and cotyledonary tissues. The decrease in growth potential of these tissues occurred regardless of whether they were excised from after-ripened seeds or non-after-ripened seeds. It is inferred that the primary dormancy of cocklebur seeds is a state maintained in un-germinated seeds for a long time through a spontaneous transition to secondary dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号