首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
线粒体缺陷和氧化应激参与了神经退行性疾病的发病机制.叠氮钠(NaN3)是线粒体细胞色素C氧化酶(COX)的特异性抑制剂,能诱导线粒体缺陷.本实验通过细胞活性检测(MTT法),形态学观察,分析H2O2对原代培养的正常神经元及NaN3诱导的线粒体缺陷神经元的损伤作用的差异.并通过RT-PCR半定量法检测H2O2损伤后两类神经元内硫氧还蛋白(Thioredoxin,Trx)mRNA水平的变化,以阐明细胞内这一重要氧化还原调节蛋白在神经元损伤时的作用机制.实验表明,在正常神经元内,H2O2的损伤对Trx表达量的改变似乎不明显;而线粒体缺陷神经元内Trx的表达量下降,且对于H2O2的损伤具有浓度、时间依赖性.提示在线粒体功能缺陷神经元中,Trx似乎发挥更重要的作用.  相似文献   

2.
叠氮钠损伤的神经元内硫氧还蛋白mRNA水平的变化   总被引:5,自引:0,他引:5  
氧化应激与许多神经退变病有关,而线粒体损伤是氧化应激加剧的重要原因。本文通过细胞活性检测(MTT法)、形态学观察,分析NaN3对原代培养神经元的损伤作用,并通过RT-PCR半定量检测NaN3损伤后神经元内硫氧还蛋白(Thioredoxin,Trx)mRNA水平的改变,以阐明这一重要的氧还调节蛋白在神经元损伤过程中的作用。实验表明NaN3以浓度和时间依赖方式损伤神经元,降低Trx表达水平。提示:神经元内呼吸链受损引起Trx表达减少,从而减弱神经元内氧还调节功能,最终引起神经元损伤、死亡。  相似文献   

3.
观察鱼藤酮诱导的线粒体轻度损伤细胞氧化应激时硫氧还蛋白转录水平的变化,探讨细胞氧化损伤的可能机制。通过荧光素发光法检测ATP生成、细胞内活性氧(ROS)水平的变化,流式细胞术检测线粒体膜电位,了解低剂量鱼藤酮对线粒体功能的影响;继而用H2O2诱导细胞氧化损伤,MTT法检测细胞活性,观察正常及线粒体缺陷细胞氧化应激时,胞内硫氧还蛋白(Trx)mRNA水平的变化。结果表明,鱼藤酮以剂量依赖方式抑制线粒体ATP的产生、降低线粒体膜电位,而细胞内ROS水平增高;当线粒体损伤细胞氧化应激时胞内Trx mRNA水平降低,提示鱼藤酮诱导线粒体轻度损伤细胞抗氧化能力降低与Trx转录受到抑制有关。  相似文献   

4.
叠氮钠损伤的神经元内硫氧还蛋白mRNA水平的变化   总被引:1,自引:0,他引:1  
氧化应激与许多神经退变病有关,而线粒体损伤是氧化应激加剧的重要原因。本文通过细胞活性检测(MTT法)、形态学观察,分析NaN_3对原代培养神经元的损伤作用,并通过RT-PCR半定量检测NaN_3损伤后神经元内疏氧还蛋白(Thioredoxin,Trx)mRNA水平的改变,以阐明这一重要的氧还调节蛋白在神经元损伤过程中的作用。实验表明NaN_3以浓度和时间依赖方式损伤神经元,降低Trx表达水平。提示:神经元内呼吸链受损引起Trx表达减少,从而减弱神经元内氧还调节功能,最终引起神经元损伤、死亡。  相似文献   

5.
过度氧化应激是诱发许多神经退变病的重要因素。叠氮钠(NaN3)是线粒体有氧呼吸链细胞色素c氧化酶(COX)的特异性抑制剂,过氧化氢(H2O2)释放氧自由基造成氧化损伤,两者都可以用于氧化应激情况下神经元损伤模型的建立。硫氧还蛋白还原酶(thioredoxin reductase,TR)特异性的还原氧化型的硫氧还蛋白(thioredoxin,TRx),调节细胞中氧化还原的平衡。现以不同浓度NaN3或H2O2,处理人神经母细胞瘤细胞(SH-SY5Y细胞),建立损伤模型。通过MTT法、形态学方法检测SH-SY5Y细胞损伤程度。同时,通过Western blot定量法、免疫细胞化学法,检测损伤的SH-SY5Y细胞中TR含量的改变,观察TR在胞内的分布。实验表明,NaN3、H2O2,均以浓度依赖方式损伤SH-SY5Y细胞;TR分布于SH-SY5Y细胞的胞浆,表明TR是一种分泌蛋白,损伤后分布无明显变化。但一定浓度的NaN3作用后3h,胞内TR水平显著降低,即神经系统内呼吸链受损可抑制TR的表达,为神经退变病的防治提供了新的思路。  相似文献   

6.
该文通过研究H2O2诱导人脐静脉内皮细胞(HUVEC)中氯离子通道蛋白1(chloride intracellular channel 1, CLIC1)对线粒体动力学平衡的影响,探讨CLIC1在内皮细胞损伤中的作用及机制。体外培养HUVEC细胞,分别用CLIC1抑制剂IAA94(40μmol/L)、H2O2(0.9 mmol/L)、IAA94(40μmol/L)和H2O2(0.9 mmol/L)联合处理,荧光法检测细胞活性氧(reactive oxygen species,ROS)和丙二醛(malondialdehyde, MDA)的含量; JC-1染色法检测细胞线粒体膜电位的变化;定量PCR技术检测CLIC1、线粒体动力相关蛋白1(dynamin-related protein 1, Drp1)以及线粒体融合蛋白1(mitofusin 1, Mfn1)的mRNA表达;免疫印迹技术检测CLIC1、Drp1蛋白的水平。结果显示:与正常组相比, H2O2处理的内皮细胞中ROS、MDA含量增加(P0.05), CLIC1表达量上调(P0.05),三磷酸腺苷(ATP)含量减少(P0.05),线粒体膜电位降低(P0.001),线粒体融合蛋白Mfn1表达显著降低(P0.05),线粒体分裂蛋白Drp1表达显著升高(P0.05);而IAA94预处理2 h后,内皮细胞中ROS、MDA含量减少(P0.05),线粒体融合蛋白Mfn1表达显著增加(P0.05),线粒体分裂蛋白Drp1表达显著降低(P0.05),线粒体膜电位升高(P0.001)。以上结果表明, CLIC1在H2O2诱导的内皮细胞线粒体损伤中发挥重要作用,其机制可能与CLIC1干扰线粒体动力学平衡有关。  相似文献   

7.
探讨脑源性神经营养因子/酪氨酸激酶受体B(BDNF/TrkB)信号通路激活参与何首乌苷(PMG)对过氧化氢(H2O2)诱导神经元氧化应激损伤的保护作用。实验采用神经元原代培养,建立大鼠乳鼠海马神经元氧化应激损伤模型。实验结果显示高浓度的H2O2与MTT测定的细胞存活率降低相关,选择细胞存活率在40%~50%之间的200μmol/LH2O2浓度作为氧化应激损伤的实验浓度。与模型组相比,PMG预处理组(200μmol/L)可抑制H2O2诱导的神经元损伤(P<0.001)。TUNEL和β-微管蛋白III荧光染色显示PMG保护H2O2诱导的神经细胞损伤,明显降低细胞凋亡率(P<0.001),细胞骨架形态恢复正常。与PMG+H2O2预处理组相比较,当加入BDNF/TrkB信号转导通路阻断剂K252a后,PMG+H2O2+K252a组神经元细胞存活率大幅度下降(P<0.01),细胞骨架形态呈损伤状态。同时,我们发现PMG预处理恢复H2O2诱导的BDNF和P-TrkB的低表达水平,并且用K252a阻断BDNF/TrkB信号传导抑制了PMG对BDNF和P-TrkB表达水平的影响(P<0.01)。综上所述,何首乌苷可能通过激活BDNF/TrkB信号转导通路及维护神经元骨架的完整,实现对大鼠海马神经元氧化应激损伤的拮抗作用。  相似文献   

8.
本文研究了籽瓜多糖(SWP)对H2O2致PC12细胞氧化应激损伤的影响及其机制。通过建立H2O2诱导PC12细胞氧化损伤模型,CCK-8法测定细胞存活率;硫辛酰胺脱氢酶催化的INT显色反应检测乳酸脱氢酶(LDH)释放量,DCFH-DA检测细胞内ROS;ELISA法检测8-OHd G;JC-1染色检测细胞线粒体膜电位;利用caspase-3可以催化底物Ac-DEVD-p NA的反应检测caspase-3活性;应用caspase-9催化特异性底物Ac-LEHDp NA检测caspase-9活性。结果显示:过氧化氢组与对照组相比,终浓度为500μmol/L H2O2作用细胞24 h后,细胞活力显著下降(P0.01);LDH释放量和细胞内ROS增加(P0.01);8-OHd G含量上升(P0.01);线粒体膜电位下降(P0.01);caspase-3和caspase-9活性增强(P0.01)。与H2O2损伤组相比,不同剂量的SWP预处理后,能显著改善H2O2引起的上述指标的变化(P0.05)。由此得出:SWP对H2O2诱导的PC12细胞的氧化损伤具有一定的保护作用。  相似文献   

9.
为探讨HMG盒转录因子1 (HBP1)在过氧化氢(H2O2)诱导的细胞衰老中所起的作用,通过慢病毒感染得到稳定表达HBP1的MDA-MB-231细胞,以H2O2处理细胞.采用Western免疫印迹杂交试验和实时PCR检测HBP1、p16和细胞周期蛋白D1(cyclinD1)表达水平的变化.用荧光免疫试验检测H2O2对HBP1表达的影响,以及HBP1在H2O2的诱导下对于p16和细胞周期蛋白D1启动子的影响.用细胞增殖试验检测H2O2对于细胞增殖的影响. 用基因敲减实验和衰老相关β半乳糖苷酶(SA-β-Gal)染色检测在H2O2诱导的细胞衰老中HBP1所起的作用.Western和免疫荧光实验结果显示,细胞经H2O2处理后,HBP1表达增高的同时促进了p16的表达,降低了细胞周期蛋白D1的表达.细胞增殖实验结果显示,H2O2显著抑制了细胞的增殖.基因敲减实验和SA-β-Gal染色实验说明,H2O2可诱导HBP1表达正常的MDA-MB-231细胞衰老,而HBP1的敲减则抑制了H2O2诱导的细胞衰老过程.本研究结果提示,在H2O2诱导的衰老中,HBP1的表达显著增加,并通过促进衰老相关基因p16的表达和抑制生长因子cyclinD1的表达来阻碍细胞增殖,促进细胞衰老.HBP1在H2O2诱导的细胞衰老过程中起着重要作用,H2O2诱导的细胞衰老必须在HBP1存在的情况下才能发生.  相似文献   

10.
目的:氧化应激在肝脏疾病中扮演着重要的角色。胶原蛋白肽是天然的抗氧化剂,其在动物实验中已经被证实有抑制氧化应激的作用。最新研究证实胶原蛋白肽将有可能被应用在肝脏疾病的预防中,但是很少有研究报道其分子作用机制。因此本研究在胶原蛋白肽是对H2O2诱导的正常人的肝细胞系HL7702氧化损伤有保护作用的基础上,并探索其分子作用机制。方法:实验设空白对照组,H2O2模型组,胶原蛋白肽低、中、高剂量组(10,100,200μg/ml)。胶原蛋白肽各组加入相应浓度的药物预处理12 h后,与模型组一起加入300μM H2O2的H2O2共同培养12 h,空白对照组正常培养。细胞毒性是由CCK8和乳酸脱氢酶(LDH)的释放检测。抗氧化试剂盒检测细胞内活性氧的水平,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量的变化。Western blot检测细胞内Nrf2蛋白的表达水平。结果:胶原蛋白肽对H2O2诱导的正常人的肝细胞系HL7702氧化损伤有保护作用。胶原蛋白肽能够及时清除细胞内的活性氧,增加Nrf2的蛋白表达水平,提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的活性,减轻脂质过氧化反应,从而保护正常人的肝细胞系HL7702。结论:总之,胶原蛋白肽通过增加Nrf2的蛋白表达水平,提高抗氧化活性,对H2O2诱导损伤的肝细胞发挥保护作用。本研究为胶原蛋白肽的分子作用机制提供了新的证据,将有助于预防氧化应激所致的肝损伤。  相似文献   

11.
In this study, we first developed an in vitro model of neuron with mitochondrial dysfunction, based on sodium azide (NaN(3))-induced inhibition of cytochrome c oxidase (complex IV) that is reduced in post-mortem AD brains, and then investigated the role of Trx expression in response of neurons with mitochondrial dysfunction to oxidative stress. We found that neurons treated with sub-threshold concentration (8mM) of NaN(3) have mitochondrial dysfunction and that thioredoxin (Trx) mRNA and protein level decreased in neurons with mitochondrial dysfunction though no significant change in the viability. When exposed to extracellular H(2)O(2), neurons with mitochondrial dysfunction were significantly more vulnerable than control neurons. Trx mRNA and protein levels in neurons with mitochondrial dysfunction decreased in a dose- and time-dependent manner (mRNA: 25-150 microM H(2)O(2) for 1h and 50 microM H(2)O(2) for 1-3h; protein: 25-150 microM H(2)O(2) for 1h and 50 microM H(2)O(2) for 1-4h), while those in control neurons had no significant changes (50-250 microM H(2)O(2) for 1h). The data implied that vulnerability of neurons with mitochondrial dysfunction to oxidative stress is associated with down-regulation of thioredoxin.  相似文献   

12.
Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.  相似文献   

13.
Thioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system. Here, we investigate the potential implication of Trx2 in embryonic development of chick spinal cord. To this end, we first studied the distribution of the enzyme in this tissue and report strong expression of Trx2 in chick embryo post-mitotic neurons at E4.5 and in motor neurons at E6.5. Using in ovo electroporation, we go on to highlight a cytoprotective effect of Trx2 on the programmed cell death (PCD) of neurons during spinal cord development and in a novel cultured spinal cord explant model. These findings suggest an implication of Trx2 in the modulation of developmental PCD of neurons during embryonic development of the spinal cord, possibly through redox regulation mechanisms.  相似文献   

14.
Reactive oxygen species (ROS) are released at the mitochondrial inner membrane by the electron transport chain (ETC). Increasing evidence suggests that mitochondrial H2O2 acts as a signaling molecule and participates in the (feedback) regulation of mitochondrial activity and turnover. It seems likely that key mitochondrial components contain redox-sensitive thiols that help to adapt protein function to changes in electron flow. However, the identity of most redox-regulated mitochondrial proteins remains to be defined. Thioredoxin 2 (Trx2) is the major protein-thiol-reducing oxidoreductase in the mitochondrial matrix. We used in situ mechanism-based kinetic trapping to identify disulfide-exchange interactions of Trx2 within functional mitochondria of intact cells. Mass spectrometry successfully identified known and suspected Trx2 target proteins and, in addition, revealed a set of new candidate target proteins. Our results suggest that the mitochondrial protein biosynthesis machinery is a major target of ETC-derived ROS. In particular, we identified mitochondrial methionyl-tRNA synthetase (mtMetRS) as one of the most prominent Trx2 target proteins. We show that an increase in ETC-derived oxidants leads to an increase in mtMetRS oxidation in intact cells. In conclusion, we find that in situ kinetic trapping provides starting points for future functional studies of intramitochondrial redox regulation.  相似文献   

15.
16.
To investigate the effects of the predominant nonprotein thiol, glutathione (GSH), on redox homeostasis, we employed complementary pharmacological and genetic strategies to determine the consequences of both loss- and gain-of-function GSH content in vitro. We monitored the redox events in the cytosol and mitochondria using reduction-oxidation sensitive green fluorescent protein (roGFP) probes and the level of reduced/oxidized thioredoxins (Trxs). Either H(2)O(2) or the Trx reductase inhibitor 1-chloro-2,4-dinitrobenzene (DNCB), in embryonic rat heart (H9c2) cells, evoked 8 or 50 mV more oxidizing glutathione redox potential, E(hc) (GSSG/2GSH), respectively. In contrast, N-acetyl-L-cysteine (NAC) treatment in H9c2 cells, or overexpression of either the glutamate cysteine ligase (GCL) catalytic subunit (GCLC) or GCL modifier subunit (GCLM) in human embryonic kidney 293 T (HEK293T) cells, led to 3- to 4-fold increase of GSH and caused 7 or 12 mV more reducing E(hc), respectively. This condition paradoxically increased the level of mitochondrial oxidation, as demonstrated by redox shifts in mitochondrial roGFP and Trx2. Lastly, either NAC treatment (EC(50) 4 mM) or either GCLC or GCLM overexpression exhibited increased cytotoxicity and the susceptibility to the more reducing milieu was achieved at decreased levels of ROS. Taken together, our findings reveal a novel mechanism by which GSH-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号