首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the restoration of peripheral nerve function and simple neurobehavioral reflexes in the freeze-tolerant wood frog (Rana sylvatica). Thirty-two specimens, allowed to freeze for 39 h and ultimately cooled to-2.2°C, were sampled at various time intervals up to 60 h after thawing at 5°C was initiated. The sciatic nerves of treated frogs were initially unresponsive to stimulation, but usually regained excitability within 5 h. Except for a slight reduction in nerve excitability characteristics of the compound action potentials of treated frogs were indistinguishable from those of control frogs. Recovery times for the hindlimb retraction and righting reflexes were 8 h and 14 h, respectively. Concentrations of the cryoprotectant glucose increased 8.2-fold in the sciatic nerve and 10.5-fold in the underlying semimembranosis muscle of treated frogs, and remained elevated for at least 60 h after thawing was initiated. These organs lost 47.2% and 15.9%, respectively, of their water during freezing, but were rehydrated within 2 h of the onset of thawing. The accumulation of glucose and the withdrawal of tissue water apparently are cryoprotective responses which enable this species to survive freezing.  相似文献   

2.
Cao  Yu  Xiong  Da  Kong  Ruize  Dai  Guolin  Zhong  Minghua  Li  Li  Zhang  Jinping  Jiang  Lihong  Li  Hongrong 《Molecular and cellular biochemistry》2019,455(1-2):29-39

Carbamoyl phosphate synthetase I (CPS1) represents an important regulatory enzyme of the urea cycle that mediates the ATP-driven reaction ligating ammonium, carbonate, and phosphate to form carbamoyl phosphate. The freeze-tolerant wood frog (Rana sylvatica or Lithobates sylvaticus) accumulates high concentrations of urea during bouts of freezing to detoxify any ammonia generated and to contribute as a cryoprotectant thereby helping to avoid freeze damage to cells. Purification of CPS1 to homogeneity from wood frog liver was performed in control and frozen wood frogs by a three-step chromatographic process. The affinity of CPS1 for its three substrates was tested in the purified control and freeze-exposed enzyme under a variety of conditions including the presence and absence of the natural cryoprotectants urea and glucose. The results demonstrated that affinity for ammonium was higher in the freeze-exposed CPS1 (1.26-fold) and that with the addition of 400 mM glucose it displayed higher affinity for ATP (1.30-fold) and the obligate activator N-acetylglutamate (1.24-fold). Denaturation studies demonstrated the freeze-exposed enzyme was less thermally stable than the control with an unfolding temperature approximately 1.5 °C lower (52.9 °C for frozen and 54.4 °C for control). The control form of CPS1 had a significantly higher degree of glutarylated lysine residues (1.42-fold increase) relative to the frozen. The results suggest that CPS1 activation and maintenance of urea cycle activity despite the hypometabolic conditions associated with freezing are important aspects in the metabolic survival strategies of the wood frog.

  相似文献   

3.
This study documents post-thaw recovery of jump distance and cryoprotectant mobilization in the freeze-tolerant frog Hyla versicolor over two successive years. Cold acclimated frogs had plasma glycerol levels near 1.0 mM in 2004 but it was nearly 70× higher during 2005. Freezing of frogs induced nearly identical levels of plasma glycerol (ca. 177 mM) during 2004 and 2005. Plasma glucose was only mobilized upon somatic freezing, with averages ranging between 21 and 36 mM. Control jump distance showed no difference between the two years of the study. The post-thaw jump response was identical during the first 2 years despite large differences in glycerol mobilization between these 2 years. Recovery proceeded much faster in 2005 when frogs mobilized glycerol prior to freeze exposure. Frogs were more impaired in their locomotion performance during the initial stages of recovery period when they were frozen at a lower temperature (−3 vs. −1.5°C) but they eventually recovered. Moderate lengthening of the freeze duration (3 vs. 7 days) with the 2004 collection group did not affect recovery of jump distance when frogs were frozen at −1.5°C. Hence, postfreeze impairment of locomotion is dependent of the intensity of the freeze temperature but it is a reversible process that is mitigated when glycerol is more freely distributed to body tissues.  相似文献   

4.
Freeze-tolerant organisms accumulate a diversity of low molecular weight compounds to combat negative effects of ice formation. Previous studies of anuran freeze tolerance have implicated urea as a cryoprotectant in the wood frog (Lithobates sylvatica). However, a cryoprotective role for urea has been identified only for wood frogs, though urea accumulation is an evolutionarily conserved mechanism for coping with osmotic stress in amphibians. To identify whether multiple solutes are involved in freezing tolerance in the boreal chorus frog (Pseudacris maculata), we examined seasonal and freezing-induced variation in several potential cryoprotectants. We further tested for a cryoprotective role for urea by comparing survival and recovery from freezing in control and urea-loaded chorus frogs. Tissue levels of glucose, urea, and glycerol did not vary significantly among seasons for heart, liver, or leg muscle. Furthermore, no changes in urea or glycerol levels were detected with exposure to freezing temperatures in these tissues. Urea-loading increased tissue urea concentrations, but failed to enhance freezing survival or facilitate recovery from freezing in chorus frogs in this study, suggesting little role for urea as a natural cryoprotectant in this species. These data suggest that urea may not universally serve as a primary cryoprotectant among freeze-tolerant, terrestrially hibernating anurans.  相似文献   

5.
The effects of Cu(II) supplementation on glycemic parameters, advanced glycation end products (AGEs), antioxidant status (glutathione; GSH and total antioxidant capacity; TAOC) and lipid peroxidative damage (thiobarbituric acid-reactive substances, TBARS) were investigated in streptozotocin (STZ) induced diabetic rats. The study was carried out on Wistar albino rats grouped as control (n = 10), CuCl2 treated (n = 9), STZ (n = 10) and STZ,CuCl2 treated (n = 9). STZ was administered intraperitoneally at a single dose of 65 mg/kg and CuCl2, 4 mg copper/kg, subcutaneously, every 2 days for 60 days. At the end of this period, glucose(mg/dl), Cu(μg/dl), TBARS(μmol/l), TAOC(mmol/l) were measured in plasma, GSH(mg/gHb) in erythrocytes and glycated hemoglobin (GHb)(%) in blood. Plasma AGE-peptides(%) were measured by HPLC flow system with spectrofluorimetric and spectrophotometric detectors connected on-line. Data were analyzed by the non-parametric Kruskal–Wallis and Mann–Whitney U test. In the STZ group glucose, GHb and AGE-peptide levels were all significantly higher than the control group (P < 0.01, P < 0.05, and P < 0.01, respectively). CuCl2 treated group had significantly lower glucose but significantly higher GHb, TAOC and TBARS levels than the control group (P < 0.05, P < 0.001, P < 0.05 and P < 0.001, respectively). STZ,CuCl2 treated group had significantly higher GHb, TAOC and TBARS levels compared with the control group (P < 0.001, P < 0.05 and P < 0.05, respectively); but only TAOC level was significantly higher than the STZ group (P < 0.01). This experimental study provides evidence that copper intake increases total antioxidant capacity in both nondiabetic and diabetic states. However despite the potentiated antioxidant defence, lipid peroxidation and glycation enhancing effects of CuCl2 are evident under nondiabetic conditions.  相似文献   

6.
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 °C on tissue levels of adenosine 3′–5′ cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc), as well as the levels of the protein kinase C (PKC) second messenger, inositol 1,4,5-trisphosphate (IP3), were assessed in two anurans, the freeze-tolerant wood frog, Rana sylvatica, and the freeze-intolerant leopard frog, Rana pipiens. Dehydration of wood frogs resulted in a rapid elevation of liver cAMP and PKAc; cAMP was 3.4-fold greater than control values in animals that had lost 5% of total body water, whereas PKAc was elevated threefold in 20% dehydrated frogs. These results indicate protein kinase A mediation of the liver glycogenolysis and hyperglycemia that is induced by dehydration in this species. Skeletal muscle PKAc content also rose with dehydration but neither cAMP nor PKAc was affected by dehydration in leopard frog tissues. Anoxia exposure had different effects on signal transduction systems. PKAc was elevated after 1 h anoxia in R. sylvatica brain and was sustained over time but the enzyme was unaffected in other organs; by contrast, R. pipiens showed variable responses by PKAc to anoxia in three organs. Both species showed rapid (within 30 min) and large (3 to 7.8-fold) increases in IP3 in liver of anoxic frogs that decreased slowly with continued anoxia. IP3 also increased quickly in heart of anoxia-exposed wood frogs. This suggests that PKC may mediate various metabolic adjustments that promote hypoxia/anoxia resistance such as coordinating metabolic rate depression. A progressive rise in liver IP3 during dehydration in wood frogs (reaching fourfold higher than controls in 40% dehydrated animals) may also mediate similar hypoxia resistance adaptations under this stress since anurans experience progressive hypoxia due to increased blood viscosity when water loss reaches high values. The patterns of second messenger and PKAc changes in wood frog liver during dehydration closely parallel the changes seen in these same parameters during natural freezing suggesting that the freeze tolerance of selected terrestrially hibernating anurans may have evolved out of various anuran mechanisms of dehydration resistance. Accepted: 2 January 1997  相似文献   

7.
Bivalves are filter-feeders that can accumulate large numbers of bacteria, in particular Vibrio species; these can persist within bivalve tissues largely depending on their sensitivity to the hemolymph bactericidal activity. In this work, functional parameters of the hemolymph of Mytilus galloprovincialis were evaluated in response to in vivo challenge with different bacteria (Gram(−) Vibrio anguillarum and V. splendidus, Gram(+) Micrococcus lysodeikticus). Mussels were injected with heat-killed bacteria or PBS-NaCl (controls) and hemolymph sampled from 3 to 48 h post-injection (p.i.). In hemocytes, all bacteria induced significant lysosomal membrane destabilisation (LMS) from 3 h p.i. with V. splendidus > V. anguillarum > M. lysodeikticus. LMS showed recovery for both M. lysodeikticus and V. anguillarum, whereas a further time-dependent decrease was observed for V. splendidus. Bacterial challenge also induced a rapid (from 3 h p.i.) and significant increase in serum lysozyme activity; the effect was persistent with M. lysodeikticus and transient for the two Vibrio species. In order to evaluate whether in vivo challenge may affect the subsequent capacity of hemolymph to kill bacteria, the bactericidal activity was tested in an in vitro assay towards E. coli. At 48 h. p.i. hemolymph samples from V. anguillarum-injected mussels showed a significant increase in E. coli killing (+ 35% with respect to controls); a smaller effect was observed with V. splendidus-injected mussels (+ 16%), whereas M. lysodeikticus was ineffective. Moreover, hemolymph from V. anguillarum-injected mussels showed an in vitro bactericidal activity towards V. anguillarum 2-folds higher than that of controls. Changes in total hemocyte counts (THC) and in hemocyte populations were evaluated by Flow cytometry at 6 and 48 h p.i., indicating a decrease in THC followed by recovery with all bacteria. Moreover, at 6 h p.i. a general decrease in the percentage of granulocytes was observed (V. splendidus > V. anguillarum > M. lysodeikticus), followed by complete and partial recovery with M. lysodeikticus and V. anguillarum, respectively, but not with V. splendidus. The results demonstrate the existence of differential functional immune responses in M. galloprovincialis to different bacteria.  相似文献   

8.
9.
The in vitro germination of 11 Metarhizium anisopliae and 11 Beauveria bassiana isolates originating from substrates collected in rural peridomestic areas in Central Brazil where triatomines are common was tested. Conidia completed germination up to 24 h after exposure to water activity of >0.99 aw in all isolates tested. At lower 0.93 aw germination was delayed but conidia of most isolates germinated at high rates (>98 %) within 216 h of incubation. Activities of 2 M. anisopliae and 2 B. bassiana isolates with different patterns of germination at 0.93 aw were tested in Triatoma infestans third instar nymphs. There was no relationship between germination kinetics in vitro at 0.93 aw and their activity in vivo at 98, 75 and 43 % relative humidity (rh). Isolates with accelerated germination at 0.93 aw were not more virulent at 75 and 43 % rh compared with isolates with retarded or no germination. Highest mortalities were observed at 98 % rh, and they did not exceed 25 % after 25 d incubation at lower 75 and 43 % rh. Isolates that originated from a region with an extensive annual arid period showed no adaptation to lower humidity in their activity against T. infestans.  相似文献   

10.
Freeze tolerance and changes in metabolism during freezing were investigated in the moor frog (Rana arvalis) under laboratory conditions. The data show for the first time a well-developed freeze tolerance in juveniles of a European frog capable of surviving a freezing exposure of about 72 h with a final body temperature of −3°C. A biochemical analysis showed an increase in liver and muscle glucose in response to freezing (respectively, 14-fold and 4-fold between 4 and −1°C). Lactate accumulation was only observed in the liver (4.1 ± 0.8 against 16.6 ± 2.4 μmol g−1 fresh weight (FW) between 4 and −1°C). The quantification of the respiratory metabolism of frozen frogs showed that the aerobic metabolism persists under freezing conditions (1.4 ± 0.7 μl O2 g−1 FW h−1 at −4°C) and decreases with body temperature. After thawing, the oxygen consumption rose rapidly during the first hour (6-fold to 16-fold) and continued to increase for 24 h, but at a lower rate. In early winter, juvenile R. arvalis held in an outdoor enclosure were observed to emerge from ponds and hibernate in the upper soil and litter layers. Temperature recordings in the substratum of the enclosure suggested that the hibernacula of these juvenile frogs provided sheltering from sub-zero air temperatures and reduced the time spent in a frozen state corresponding well with the observed freeze tolerance of the juveniles. This study strongly suggests that freeze tolerance of R. arvalis is an adaptive trait necessary for winter survival.  相似文献   

11.
The genotoxic potential of the natural neurotoxin Tetrodotoxin (TTX) was evaluated in a battery of in vitro and in vivo genotoxicity assays. These comprised a bacterial reverse-mutation assay (Ames test), an in vitro human lymphocyte chromosome-aberration assay, an in vivo mouse bone-marrow micronucleus assay and an in vivo rat-liver UDS assay.Maximum test concentrations in in vitro assays were determined by the TTX limit of solubility in the formulation vehicle (0.02% acetic acid solution). In the Ames test, TTX was tested at concentrations of up to 200 μg/plate. In the chromosome-aberration assay human lymphocytes were exposed to TTX at concentrations of up to 50 μg/ml for 3 and 20 h in the absence of S9, and for 3 h in the presence of S9. For the in vivo assays, maximum tested dose levels were determined by the acute lethal toxicity of TTX after subcutaneous administration. In the mouse micronucleus assay TTX dose levels of 2, 4 and 8 μg/kg were administered to male and female animals, and bone-marrow samples taken 24 and 48 h (high-dose animals only) after administration. In the UDS assay, male rats were given TTX on two occasions with a 14-h interval at dose levels of 2.4 and 8 μg/kg, the last dose being administered 2 h before liver perfusion and hepatocyte culturing. Relevant vehicle and positive control cultures and animals were included in all assays.TTX was clearly shown to lack in vitro or in vivo genotoxic activity in the assays conducted in this study. The results suggest that administration of TTX as a therapeutic analgesic agent would not pose a genotoxic risk to patients.  相似文献   

12.
The wood frog (Rana sylvatica) can survive the winter in a frozen state, in which the frog’s tissues are also exposed to dehydration, ischemia, and anoxia. Critical to wood frog survival under these conditions is a global metabolic rate depression, the accumulation of glucose as a cryoprotectant, and a reliance on anaerobic glycolysis for energy production. Pyruvate kinase (PK) catalyzes the final reaction of aerobic glycolysis, generating pyruvate and ATP from phosphoenolpyruvate (PEP) and ADP. This study investigated the effect of each stress condition experienced by R. sylvatica during freezing, including dehydration and anoxia, on PK regulation. PK from muscle of frozen and dehydrated frogs exhibited a lower affinity for PEP (Km = 0.098 ± 0.003 and Km = 0.092 ± 0.008) than PK from control and anoxic conditions (Km = 0.065 ± 0.003 and Km = 0.073 ± 0.002). Immunoblotting showed greater serine phosphorylation on muscle PK from frozen and dehydrated frogs relative to control and anoxic states, suggesting a reversible phosphorylation regulatory mechanism for PK activity during freezing stress. Furthermore, PK from frozen animals exhibited greater stability under thermal and urea-induced denaturing conditions than PK from control animals. Phosphorylation of PK during freezing may contribute to mediating energy conservation and maintaining intracellular cryoprotectant levels, as well as increase enzyme stability during stress.  相似文献   

13.
As part of a phase Ib clinical trial to determine the tolerability and safety of the highly specific acetylcholinesterase (AChE) inhibitor huperzine A, twelve (12) healthy elderly individuals received an escalating dose regimen of huperzine A (100, 200, 300, and 400 μg doses, twice daily for a week at each dose), with three (3) individuals as controls receiving a placebo. Using the WRAIR whole blood cholinesterase assay, red blood cell AChE and plasma butyrylcholinesterase (BChE) were measured in unprocessed whole blood samples from the volunteers following each dose, and then for up to 48 h following the final and highest (400 μg) dose to monitor the profile of inhibition and recovery of AChE. Significant inhibition of AChE was observed, ranging from 30–40% after 100 μg to >50% at 400 μg, and peaking 1.5 h after the last dose. Gradual recovery of AChE activity then occurs, but even 48 h after the last dose red blood cell AChE was about 10% below control (pre-dose) values. Huperzine A levels in plasma peaked 1.5 h after the final 400 μg dose (5.47 ± 2.15 ng/mL). Plasma BChE was unaffected by huperzine A treatment (as expected).Aliquots of huperzine A-containing (from three individuals) and placebo blood samples were exposed ex vivo to the irreversible nerve agent soman (GD) for 10 min, followed by removal of unbound huperzine and soman from the blood by passing through a small C18 reverse phase spin column. Eluted blood was diluted in buffer, and aliquots taken at various time intervals for AChE and BChE activity measurement to determine the time taken to achieve full return in activity of the free enzyme (dissociation from the active site of AChE by huperzine A), and thus the proportion of AChE that can be protected from soman exposure. Huperzine A-inhibited red blood cell (RBC) AChE activity was restored almost to the level that was initially inhibited by the drug. The increased doses of huperzine A used were well tolerated by these patients and in this ex vivo study sequestered more red blood cell AChE than has been previously demonstrated for pyridostigmine bromide (PB), indicating the potential improved prophylaxis against organophosphate (OP) poisoning.  相似文献   

14.
Albumin, the major circulating protein in blood, can undergo increased glycation in diabetes. One of the main properties of this plasma protein is its strong affinity to bind many therapeutic drugs, including warfarin and ketoprofen. In this study, we investigated whether or not there were any significant changes related to in vitro or in vivo glycation in the structural properties and the binding of human albumin to both therapeutic drugs. Structural parameters, including redox state and ketoamine contents of in vitro and in vivo glycated purified albumins, were investigated in parallel with their affinity for warfarin and ketoprofen. High-performance liquid chromatography was used to determine the free drug concentrations and dissociation constants according to the Scatchard method. An alternative method based on fluorescence spectroscopy was also used to assess drug-binding properties. Oxidation and glycation levels were found to be enhanced in albumin purified from diabetic patients or glycated with glucose or methylglyoxal, after determination of their ketoamine, free thiol, amino group and carbonyl contents. In parallel, significant impairments in the binding affinity of in vitro and in vivo glycated albumin, as indicated by the higher dissociation constant values and confirmed by higher free drug fractions, were observed. To a lesser extent, this alteration also significantly affected diabetic albumin affinity, indicated by a lower static quenching in fluorescence spectroscopy. This work provides useful information supporting in vivo diabetic albumin could be the best model of glycation for monitoring diabetic physiopathology and should be valuable to know if glycation of albumin could contribute to variability in drugs response during diabetes.  相似文献   

15.
Previous studies showed a significantly reduced level of hemorphins in the serum of diabetes patients. In order to elucidate the biochemical mechanisms responsible for this anomaly, the influence of hemoglobin glycation on hemorphin generation was studied. The glycation of hemoglobin occurs in the blood of diabetes patients and this could modify its enzymatic digestion and the resulting proteolytic products. Several samples of hemoglobin were obtained from the blood of type 1 diabetes patients (n = 8) and normal healthy control subjects (n = 2). The glycated hemoglobin samples were classified on the basis of their HbA1c values expressed as a percentage of total hemoglobin. Four solutions of glycated hemoglobin characterized by HbA1c values of 6%, 9.1%, 10.7% and 12.1% were treated with cathepsin D and the hemorphins obtained following the proteolysis were compared to controls. It was found that hemorphins were produced whatever the level of glycation of hemoglobin and also that the degree of glycation had no effect on the quantity of hemorphins released. Thus the alteration of hemoglobin does not seem to be the essential reason for the decrease in hemorphin concentrations in the sera of diabetic patients.  相似文献   

16.
Summary Wood frogs (Rana sylvatica) were frozen to-2.5°C under five distinct cooling regimes to investigate the effect of cooling rate on survival. Frogs survived freezing when cooled at -0.16°C · h-1 or -0.18°C · h-1, but mortality resulted at higher rates (-0.30°C · h-1,-1.03°C · h-1, and -1.17°C · h-1). Surviving frogs in the latter groups required longer periods to recover, and transient injury to the neuromuscular system was evident. Some of the frogs that died had patches of discolored, apparently necrotic skin; vascular damage, as indicated by hematoma, also occurred. It is concluded that slow cooling may be critical to the freeze tolerance of wood frogs. Additional studies examined the effect of cooling rate on physiological responses promoting freeze tolerance. Mean glucose concentrations measured in plasma (15–16 mol · ml-1) and liver (42–45 mol · g-1) following a 2-h thaw did not differ between slowly- and rapidly-cooled frogs but in both groups were elevated relative to unfrozen controls. Thus freezing injury to rapidly-cooled frogs apparently was not mitigated by the presence of elevated glucose. Water contents of liver tissue, measured 2 h post-thawing, did not differ between slowly-cooled (mean = 77.6%) and rapidly-cooled (mean = 78.5%) frogs. However, the mean hematocrit of slowly-cooled frogs (48%) was significantly higher than that (37%) of frogs cooled rapidly, possibly owing to differences in the dynamics of tissue water during freezing.  相似文献   

17.
The objective of this study was to evaluate the hematological response of ringtail pike cichlid ornamental fish (Crenicichla saxatilis) during the recovery period after short‐term stress. The fish were previously submitted to the stress of chasing, capture and air exposure. Assayed were 24 C. saxatilis (85.2 ± 61.6 g) in three groups of eight fish; after 0.5, 6 and 24 h recovery, blood samples were collected. The total erythrocyte, relative thrombocyte and differential leukocyte counts as well as total hemoglobin, hematocrit, glucose, total plasma protein and the red blood cells (RBC) indices of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and MCH concentration (MCHC) were determined. Stress responses were observed after 0.5 h, although hyperglycemia remained constant during the experiment. Total lymphocyte and hemoglobin values decreased after 0.5 h in the recovery period. An increase of neutrophils and monocytosis was observed after 0.5 and 6 h, respectively. The MCHC remained stable until after 0.5 h, then varied from this time forward. MCV, MCH and erythrocyte numbers oscillated throughout the experiment. Intense stress was observed in the studied C. saxatilis, with most hematological variables not returning to their initial levels after 24 h.  相似文献   

18.
Aloe-emodin (AE) and derivatives may be present as undesired components co-extracted during extraction of plants containing anthraquinonic derivatives for preparation of diacetylrhein. AE is a well-known in vitro mutagen, but up to now it failed to induce any clear in vivo genotoxic activity in the chromosome aberration assay in rat bone marrow or the in vivo/in vitro UDS test in liver. However, the two target organs noted during rodent carcinogenicity studies with danthron and emodin, two other well-known anthraquinone derivatives, are the colon and the kidney. Therefore, the choice of the organs for testing the genotoxicity of AE, i.e. bone marrow and liver, may be considered inadequate to demonstrate a possible in vivo genotoxic activity. In this context, the in vivo mouse comet assay was performed on both isolated kidney and colon cells in order to demonstrate a possible organospecific genotoxicity after oral administration of AE. Concurrently, the Ames test and the in vitro micronucleus assay with TK6 human lymphoblastoid cells were performed in their microscale version both with S9 from Aroclor 1254-induced liver or kidney, and without S9.AE induced primary DNA damage in the liver and in the kidney as observed between 3 and 6 h after two oral administrations at 500, 1000 and 2000 mg/kg bw, underlining an in vivo genotoxic mechanism of action. Furthermore, AE induced a clear genotoxic activity both in the Salmonella typhimurium strains TA1537 and TA98 and in the in vitro micronucleus assay in the absence as well as in the presence of metabolic activation. As no significant variation in the genotoxic activity of AE was noted when using either liver or kidney S9-mix, it seems that no quantitatively and/or qualitatively specific renal metabolism occurs. The kidney may be a target organ of AE as it is the major route of excretion. Under such conditions the separation of AE components should take place and the residual content of undesired AE derivatives should be made as low as reasonably achievable. AE present in plant extracts should be considered as an in vivo genotoxin and this property should be taken into account in the risk assessment for human exposure.  相似文献   

19.
The freeze tolerant wood frog Rana sylvatica was studied to determine the impact of the freezing and thawing of this frog on the activity of γ-glutamyltranspeptidase in the liver. On exposure to ?2·5°C, for 1, 12 and 24 h, frogs were found to be cool, covered with ice crystals and frozen, respectively. Thawing for 24 h at 4°C recovered the frogs completely. A 45 per cent decrease in the liver weight: body weight ratio was notable after 1 h at ?2·5°C, suggestive of an early hepatic capacitance response. A glycemic response to freezing was observed: blood glucose levels exhibited a 55 per cent decrease after 1 h at ?2·5°C on cooling; a 10·5-fold increase after 12 h at ?2·5°C on the initiation of freezing; and a 22-fold increase after 24 h at ?2·5°C in the fully frozen state. Blood glucose levels remained elevated four-fold in the thawed state. Plasma insulin levels were increased twofold in the frozen state and 1·8-fold in the thawed state, while plasma ketone levels were increased 1·8-fold in the frozen state and 1·5-fold in the thawed state. Plasma total T3 levels were decreased by 22 per cent in the frozen state and normalized on thawing. In homogenates and plasma membranes isolated from the livers of Rana sylvatica, the activity of γ-glutamyltranspeptidase was found to be elevated at all stages of the freeze–thaw process. After 1, 12 and 24 h at ?2·5°C, activities were increased 2·5-, 2·3-, 2·4-fold respectively in the homogenates and 2·5-, 2·2-, 2·4-fold respectively in the plasma membranes. After thawing, activities were still increased 1·9-fold in both homogenates and plasma membranes. In homogenates prepared from the kidneys of Rana sylvatica, the activity of γ-glutamyltranspeptidase was increased 1·4-fold after 1 h at ?2·5°C after which it returned to normal. The role of thyroid hormone in producing the increase in γ-glutamyltranspeptidase in the liver of Rana sylvatica in response to freezing is discussed as is the significance of the enzyme increase in terms of hepatic cytoprotection and freeze tolerance.  相似文献   

20.

Background  

Different gene expression patterns correlate with the altered phenotype in biofilm-associated bacteria. Iron and iron-linked genes are thought to play a key-role in biofilm formation. The expression of Fe-linked genes (sirR, sitABC operon) in Staphylococcus epidermidis, was compared in planktonic versus sessile bacteria in vitro and in vivo in a subcutaneous foreign body rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号