首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的测试气管插管法接种高致病性禽流感病毒H5N1感染恒河猴的优势效果及疾病分析,为有效感染恒河猴、制备H5N1疾病模型提供实验依据。方法使用人源H5N1病毒液经气管插管滴入恒河猴上呼吸道进行感染,观察感染恒河猴的临床表现,每天采集咽拭子、鼻灌洗液,在感染前2d感染后第3、5、7天采血,感染后第3和7天分别解剖1只恒河猴,取支气管淋巴结、肠淋巴结、鼻甲、心、肝、脾、肺、肾、肠、气管、脑及血液进行病毒分离、核酸载量检测和血常规测定。结果感染后第2天恒河猴出现食欲下降,活动减少,并伴有一过性体温升高,白细胞数和淋巴细胞数下降。咽拭子、鼻灌洗液、肺、心、气管、脑、肝、肾、肠和血液中都能分离到H5N1病毒。结论气管插管法接种H5N1病毒能有效感染恒河猴,并在猴体内多组织中分离、检测到病毒,为制备完善的H5N1模型和检测指标确定、进一步研究H5N1病毒的致病机制等奠定了基础。  相似文献   

2.
The infectivity of herpes simplex virus type 1 (HSV-1) was inactivated after treatment with either concanavalin A (ConA) or periodate. Phytohemagglutinin, wheat germ agglutinin, pokeweed mitogen, and neuraminidase failed to inactivate the virus. The effect of ConA could be specifically inhibited or reversed by the addition of α-methyl-d-glucoside or α-methyl-d-mannoside. Evidence was obtained that HSV-1 inactivated by ConA could adsorb to host cells. Viral aggregation was not a major mechanism in the inactivation of HSV-1 by ConA. Under the experimental conditions employed, inactivation of HSV-1 was faster by ConA than by antiserum and less temperature dependent. A ConA-resistant fraction was detected which appeared to adsorb less quickly than untreated virus, and penetration of ConA-resistant fraction was strikingly slow. The presence of aggregates in the virus preparation did not appear to account for the ConA-resistant fraction. Inactivation of viral infectivity by ConA was obtained only with enveloped viruses, since HSV-1, HSV-2, pseudorabies, and vesicular stomatitis virus were inactivated and vaccinia and echovirus type 6 were not.  相似文献   

3.
Reactivation of herpes simplex virus type 1 (HSV-1) in the trigeminal ganglion (TG) was induced by UV irradiation of the corneas of latently infected mice. Immunocytochemistry was used to monitor the dynamics of cytokine (interleukin-2 [IL-2], IL-4, IL-6, IL-10, gamma interferon [IFN-γ], and tumor necrosis factor alpha [TNF-α]) and viral antigen production in the TG and the adjacent central nervous system on days 1 to 4, 6, 7, and 10 after irradiation. UV irradiation induced increased expression of IL-6 and TNF-α from satellite cells in uninfected TG. In latently infected TG, prior to reactivation, all satellite cells were TNF-α+ and most were also IL-6+. Reactivation, evidenced by HSV-1 antigens and/or infiltrating immune cells, occurred in 28 of 45 (62%) TG samples. Viral antigens were present in the TG in neurons, often disintegrating on days 2 to 6 after irradiation. Infected neurons were usually surrounded by satellite cells and the foci of immune cells producing TNF-α and/or IL-6. IL-4+ cells were detected as early as day 3 and were more numerous by day 10 (a very few IL-2+ and/or IFN-γ+ cells were seen at this time). No IL-10 was detected at any time. Our observations indicate that UV irradiation of the cornea may modulate cytokine production by satellite cells. We confirm that neurons are the site of reactivation and that they probably do not survive this event. The predominance of TNF-α and IL-6 following reactivation parallels primary infection in the TG and suggests a role in viral clearance. The presence of Th2-type cytokines (IL-4 and IL-6) indicates a role for antibody. Thus, several clearance mechanisms may be at work.  相似文献   

4.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.  相似文献   

5.
Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa.  相似文献   

6.
Mouse models of herpes simplex virus type 1 (HSV-1) infection provide significant insights into viral and host genes that regulate disease pathogenesis, but conventional methods to determine the full extent of viral spread and replication typically require the sacrifice of infected animals. To develop a noninvasive method for detecting HSV-1 in living mice, we used a strain KOS HSV-1 recombinant that expresses firefly (Photinus pyralis) and Renilla (Renilla reniformis) luciferase reporter proteins and monitored infection with a cooled charge-coupled device camera. Viral infection in mouse footpads, peritoneal cavity, brain, and eyes could be detected by bioluminescence imaging of firefly luciferase. The activity of Renilla luciferase could be imaged after direct administration of substrate to infected eyes but not following the systemic delivery of substrate. The magnitude of bioluminescence from firefly luciferase measured in vivo correlated directly with input titers of recombinant virus used for infection. Treatment of infected mice with valacyclovir, a potent inhibitor of HSV-1 replication, produced dose-dependent decreases in firefly luciferase activity that correlated with changes in viral titers. These data demonstrate that bioluminescence imaging can be used for noninvasive, real-time monitoring of HSV-1 infection and therapy in living mice.  相似文献   

7.
Due to inactivation of the α1,3-galactosyltransferase gene (GGTA1, or the α1,3GT gene) approximately 28 million years ago, the carbohydrate αGal (Galα1,3Galβ1,4GlcNAc) is not expressed on the cells of Old World monkeys and apes (including humans) but is expressed in all other mammals. The proposed selective advantage of this mutation for these primates is the ability to produce anti-Gal antibodies, which may be an effective immune component in neutralizing αGal-expressing pathogens. However, loss of α1,3GT expression may have been advantageous by providing natural resistance against viral pathogens that exploited the α1,3GT pathway or cell surface αGal for infection. Infections of paired cell lines with differential expression of α1,3GT showed that Sindbis viruses (SINV) preferentially replicate in α1,3GT-positive cells, whereas herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) preferentially grow in cells lacking α1,3GT. Viral growth and spread correlated with the ability of the different viruses to successfully initiate infection in the presence or absence of α1,3GT expression. GT knockout (KO) suckling mice infected with SINV strains (AR339 and S.A.AR86) experienced significant delay in onset of disease symptoms and mortality compared to wild-type (WT) B6 suckling mice. In contrast, HSV-2-infected GT KO mice had higher viral titers in spleen and liver and exhibited significantly more focal hepatic necrosis than WT B6 mice. This study demonstrates that α1,3GT activity plays a role in the course of infections for certain viruses. Furthermore, this study has implications for the evolution of resistance to viral infections in primates.  相似文献   

8.
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.  相似文献   

9.
To identify mucosal immunity in HIV-infected chimpanzees, IgG, IgA, and IgM from plasma, saliva, rectal swabs, vaginal washes, semen, and urethral washes were tested from four male and three female HIV-1IIIB infected chimpanzees. The level of HIV infections in the seven chimpanzees were classified as high, intermediate and low depending on the number of HIV-1 infected cells per 107 peripheral blood mononuclear cells (PBMC). One male chimpanzee had a relatively high viral load, two males and two females had moderate viral loads and one male and one female had low levels of infection. All seven animals had plasma antibody. The principal finding was that nonclassical mucosal antibodies of the IgG isotype were the predominant antibody in the saliva, rectal swabs, vaginal washes, semen, and urethral washes of infected animals. All plasma and mucosal samples were negative for IgM antibodies. The results show that HIV-1 specific IgG responses and not sIgA predominate at mucosal surfaces of HIV-1IIIB infected chimpanzees. A trend was observed in which high viral loads correlated with high plasma IgG, IgA and sIgA titers. An overall correlation between relatively high virus loads and high amounts of mucosal IgG was also found.  相似文献   

10.
Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn2+. Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus''s propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS).  相似文献   

11.
Reactivation of herpes simplex virus type 1 (HSV-1) occurred rapidly in cells of latently infected adult mouse trigeminal ganglia which were cultured in serum-free medium in the presence of sufficient nerve growth factor (NGF). However, HSV-1 reactivation was delayed significantly in ganglionic cultures in the absence of exogenous NGF or in cultures treated with 2-aminopurine in the presence of NGF. The delayed viral reactivation in ganglionic cultures without NGF was accelerated by treatment with phorbol myristate acetate or dibutyryl cyclic AMP. Culture conditions which affected HSV-1 reactivation did not affect replication of HSV-1 in normal ganglionic cultures.  相似文献   

12.
13.
Paired immunoglobulin-like type 2 receptor α (PILRα) is a herpes simplex virus 1 (HSV-1) entry receptor that associates with O-glycans on HSV-1 envelope glycoprotein B (gB). Two threonine residues (Thr-53 and Thr-480) in gB, which are required for the addition of the principal gB O-glycans, are essential for binding to soluble PILRα. However, the role of the two threonines in PILRα-dependent viral entry remains to be elucidated. Therefore, we constructed a recombinant HSV-1 carrying an alanine replacement of gB Thr-53 alone (gB-T53A) or of both gB Thr-53 and Thr-480 (gB-T53/480A) and demonstrated that these mutations abrogated viral entry in CHO cells expressing PILRα. In contrast, the mutations had no effect on viral entry in CHO cells expressing known host cell receptors for HSV-1 gD, viral entry in HL60 cells expressing myelin-associated glycoprotein (MAG) (another HSV-1 gB receptor), viral attachment to heparan sulfate, and viral replication in PILRα-negative cells. These results support the hypothesis that gB Thr-53 and Thr-480 as well as gB O-glycosylation, probably at these sites, are critical for PILRα-dependent viral entry. Interestingly, following corneal inoculation in mice, the gB-T53A and gB-T53/480A mutations significantly reduced viral replication in the cornea, the development of herpes stroma keratitis, and neuroinvasiveness. The abilities of HSV-1 to enter cells in a PILRα-dependent manner and to acquire specific carbohydrates on gB are therefore linked to an increase in viral replication and virulence in the experimental murine model.Herpes simplex virus 1 (HSV-1) entry into host cells depends on interactions between cell surface receptors and HSV-1 virion envelope glycoproteins (39). Five of the 12 HSV-1 envelope glycoproteins that have been identified thus far (i.e., glycoprotein B [gB], gC, gD, gH, and gL) have roles in viral entry (39). Both gB and gC mediate virion attachment by interacting with cell surface glycosaminoglycan, primarily heparan sulfate (16, 17). Although not essential for entry, this step provides stable interactions between the virion and the cell that favor the next steps (39). These steps include gD binding to one of its identified receptors, i.e., herpesvirus entry mediator (HVEM), nectin-1, and specific sites on heparan sulfate 3-O-sulfated heparan sulfate (3-O-S-HS) generated by certain 3-O-sulfotransferases (3-O-STs) (14, 28, 38, 51). Subsequent fusion between the virion envelope and host cell membrane, which requires the cooperative function of gB, heterodimer gH/gL, gD, and a gD receptor, then produces nucleocapsid penetration into the cell (31, 46).In addition to the interaction of gD with a gD receptor, gB binding to a cellular receptor other than heparan sulfate has been suggested to mediate viral entry, based on the observation that a soluble form of gB binds to heparan sulfate-deficient cells and blocks HSV-1 infection of some cell lines (3). Consistent with this observation, we have reported that paired immunoglobulin-like type 2 receptor α (PILRα) associates with gB and functions as an HSV-1 entry receptor (36). Viral entry via PILRα appears to be conserved among alphaherpesviruses, but there is a PILRα preference based on the observation that PILRα is able to mediate the entry of pseudorabies virus, a porcine alphaherpesvirus, but not of HSV-2 (1). Importantly, HSV-1 infection of human primary monocytes expressing both HVEM and PILRα was blocked by either an anti-PILRα or anti-HVEM antibody, suggesting that cellular receptors for both gD and gB are required for HSV-1 infection (36). However, CHO-K1 cells, which are resistant to HSV-1 infection, can become susceptible to HSV-1 entry and HSV-1-induced cell fusion after the overexpression of either a gD receptor, such as nectin-1, or PILRα (14, 36). It was thought that CHO-K1 cells express endogenously low levels of gB and gD receptors that allow the single overexpression of either a gB or gD receptor to support detectable levels of HSV-1 entry and HSV-1-induced cell fusion (36). More recently, myelin-associated glycoprotein (MAG), which has homology to PILRα, was also reported to serve as the gB receptor for HSV-1 and varicella-zoster virus (40). However, the importance of PILRα- or MAG-dependent viral entry in HSV-1 infection and pathogenesis in vivo remains to be elucidated.PILRα is one of the paired receptor families, in which one receptor has inhibitory functions and the other mediates activation functions, and is expressed mainly in immune system cells (13, 29). In addition, PILRα was previously reported to be expressed in certain types of cells in neural tissues (36). We previously identified one of the PILRα ligands as CD99 (37). Interestingly, PILRα recognition of CD99 is dependent on the addition of sialylated O-linked sugar chains at particular CD99 threonines (50). Similarly, we recently demonstrated that a specific sialylated O-glycan(s) on gB is critical for PILRα binding, based on observations that neuraminidase, which removes sialic acid, and benzyl-α-GalNAc treatment, which blocks O-glycan synthesis, inhibited gB binding to a soluble PILRα (49). More importantly, one (Thr-53) or both (Thr-53 and Thr-480) putative O-glycosylation sites identified by bioinformatics analysis are required for the binding of gB to soluble PILRα, and the replacement of both Thr-53 and Thr-480 with alanine significantly inhibited the addition of O-glycans to gB (49). These observations suggest that Thr-53 and Thr-480 in gB are O-glycosylated, and these sites, and probably the addition of specific carbohydrates to them, are required for the interaction of gB with PILRα. However, it remains uncertain whether gB Thr-53 and Thr-480, and probably the gB O-glycosylation of these sites, are required for PILRα-dependent viral entry in natural infections.In the present study, we have shown that the alanine replacement of gB Thr-53 (gB-T53A) alone or of both gB Thr-53 and Thr-480 (gB-T53/480A) significantly inhibited cell-cell fusion in CHO cells expressing PILRα, gB, gD, gH, and gL, whereas the mutations had no effect on cell-cell fusion in CHO cells expressing nectin-1, gB, gD, gH, and gL. Furthermore, we constructed recombinant HSV-1 carrying the gB-T53A and gB-T53/480A mutations and found that these mutations abrogated PILRα-dependent viral entry but had no effect on viral entry via known receptors for HSV-1 gD and MAG, viral attachment to heparan sulfate, and viral replication in PILRα-negative cells. We also tested these recombinant viruses in mice and present data showing that the mutations in gB significantly reduced viral replication, the development of herpes stromal keratitis (HSK), and neuroinvasiveness.  相似文献   

14.
Herpes simplex viruses (HSV) reactivate at rates proportional to the viral loads in latently infected ganglia. However, these rates vary substantially among infected animals. We assessed whether the numbers of HSV-specific CD8(+) T cells infiltrating latently infected ganglia also affect reactivation rates and contribute to their variability. Following corneal infection of mice with HSV type 2 (HSV-2), we quantified the latent viral loads in dissociated trigeminal ganglia by real-time PCR, the numbers of infiltrating CD8(+) T cells by flow cytometry, and the rates of reactivation by the detection of cell-free virus released from ganglion cells cultured in 96-well plates. The reactivation rates correlated directly with the latent viral loads (P = 0.001) but did so more strongly (P = 10(-7)) when cultures were depleted of CD8(+) T cells. Reactivation rates were reduced in a dose-dependent fashion by adding back ganglion CD8(+) T cells to the cultures (P = 0.003). We related the latent viral loads, numbers of CD8(+) T cells, and reactivation rates by mathematical equations. The rates of reactivation predicted from latent viral loads and numbers of infiltrating CD8(+) T cells in dissociated ganglia correlated with the observed rates of reactivation (P = 0.04). The reactivation of HSV-2 from ganglia ex vivo is determined both by the latent viral load and the number of infiltrating CD8(+) T cells.  相似文献   

15.
Thapa M  Carr DJ 《Journal of virology》2008,82(20):10295-10301
The role of tumor necrosis factor alpha (TNF-α) was evaluated for CXCL10-deficient (CXCL10−/−) mice which succumbed to genital herpes simplex virus type 2 (HSV-2) infection and possessed elevated levels of virus and TNF-α but not other cytokines in the central nervous system (CNS) and vaginal tissue within the first 7 days following virus exposure. Anti-TNF-α but not control antibody treatment offsets the elevated mortality rate of CXCL10−/− mice, despite increased CNS viral titers. In addition, TNF-α neutralization suppressed recruitment of leukocyte subpopulations into the CNS, which is associated with reduced CCL2 and CXCL9 expression. Collectively, the results implicate TNF-α as the principal mediator of mortality in response to genital HSV-2 infection.  相似文献   

16.
Background aimsDendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice.MethodsDCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge.ResultsIntramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody.ConclusionsOverall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.  相似文献   

17.
L Zhang  S Yin  W Tan  D Xiao  Y Weng  W Wang  T Li  J Shi  L Shuai  H Li  J Zhou  JP Allain  C Li 《PloS one》2012,7(8):e42455
Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P = 0.005–0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P = 0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.  相似文献   

18.
BACKGROUND: Insights in the herpesvirus-cell interactions are of general cell biology interest, especially to studies of intracellular transport, and of considerable significance in the efforts to generate drugs, vaccines, and gene therapy. However, the pathway of virus particle egress and maturation is a contentious issue. MATERIALS AND METHODS: The intracellular transport was inhibited in cultured herpes simplex virus type 1 (HSV-1) infected human fibroblasts by brefeldin A (BFA). The virus-cell interactions including the viral envelopment, transport of HSV-1 virions, and transport of viral glycoprotein D (gD-1) and glycoprotein C (gC-1) were studied by titration assay, immunoblot, immunofluorescence light microscopy, and immunogold electron microscopy of cryosections. RESULTS: gD-1 and gC-1 were synthesized and normally transported to the plasma membranes of untreated HSV-1 infected host cells. BFA (1 microg/ml medium) effectively blocked the transport of the glycoproteins to the plasma membranes and affected the tubulin and vimentin of the cytoskeleton. Viral particles and glycoproteins accumulated in the perinuclear space and the endoplasmic reticulum of BFA treated cells. Withdrawal of BFA influence up to 9 hr resulted in restored tubulin and vimentin, transport of glycoproteins to the plasma membranes, and steady release of infectious viral particles to the extracellular space superior to the cellular assembly of new virions. The ultrastructural data presented support that the primary envelopment of viral particles occur at the nuclear membranes containing immature glycoproteins followed by multiple de-envelopments and re-envelopments of the virions during the transport and maturation in the endoplasmic reticulum and the Golgi complex. CONCLUSIONS: BFA-induced changes include the cytoskeleton with significant effect on HSV-1 maturation and egress. The data support a multiple-step envelopment of HSV-1 in a common pathway of glycoprotein synthesis and virion egress.  相似文献   

19.
The virulence of thymidine kinase-negative herpes simplex virus type 1 (HSV-1; VRTK? strain) and type 2 (HSV-2; UWTK? strain) was studied in comparison with that of their parental strains (VR-3 and UW-268, respectively) in an encephalitis model of adult (4-week-old) and newborn (3-day-old) mice. Viral thymidine kinase (TK) activity was essential for the maximum expression of virulence of HSV-1, because the 50% lethal dose (LD50) of VRTK? was 60 times higher than that of VR-3 in the brains of newborn mice expressing high levels of cellular TK activity. However, the UWTK? strain showed the same virulence as the parental strain in newborn mice, despite the lack virulence in adults, suggesting that replication of the UWTK? strain was completely supported by cellular TK activity. This difference in the role of viral and cellular TKs for virus growth between HSV-1 and HSV-2 was confirmed with the one-step growth of virus strains in L-M and L-M(TK?) cells.  相似文献   

20.
Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号