首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
CDPK-mediated abiotic stress signaling   总被引:2,自引:0,他引:2  
Calcium-dependent protein kinases (CDPKs) constitute a large multigene family in various plant species. CDPKs have been shown to have important roles in various physiological processes, including plant growth and development and abiotic and biotic stress responses in plants. Functional analysis using gain-of-function and loss-of-function mutants has revealed the biological function of CDPKs in planta. Several CDPKs have been shown to be essential factors in abiotic stress tolerance, positively or negatively regulating stress tolerance by modulating ABA signaling and reducing the accumulation of reactive oxygen species (ROS). This review summarizes recent results describing the biological function of CDPKs that are involved in abiotic stress tolerance.  相似文献   

2.
3.
4.
Endophytic fungi have been shown to increase tolerance of hosts to biotic and abiotic stresses and in some cases alter growth and development of plants. In this article we evaluate some effects that clavicipitaceous endophytes have on development and physiology of plant tissues. We postulate that oxidative stress protection is the fundamental underlying benefit conferred by many endophytes, accounting for frequently observed enhanced disease resistance, drought tolerance, heavy metal tolerance and tolerance to numerous additional oxidative stresses. We hypothesize that endophyte-mediated oxidative stress protection of the host is the result of at least two processes, including: (1) secretion of reactive oxygen species (ROS) from endophytic mycelia into plant cells; and (2) secretion of auxin from endophytic mycelia into plant cells. Both processes result in an increase in ROS in plant tissues; and stimulate plant tissues to increase activities of antioxidant systems. Auxin is suggested to function in suppression of plant cell death and may be important in maintaining the endophyte–plant symbiosis.  相似文献   

5.
6.
Salinity and alkalinity are the two main environmental factors that limit rice production. Better understanding of the mechanisms responsible for salinity and alkaline stress tolerance would allow researchers to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are ~21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. Some miRNAs acts as an important endogenous regulator in plant responses to abiotic stressors. miR393 is a conservative miRNA family that occurs in a variety of different plants. The two members of the miR393 family found in rice are named osa-MIR393 and osa-MIR393b. We found that the osa-MIR393 expression level changed under salinity and alkaline stress, whereas that of osa-MIR393b did not. Target genes of osa-MIR393 were predicted, and some of these putative targets are abiotic related genes. Furthermore, we generated transgenic rice and Arabidopsis thaliana that over-expressed osa-MIR393, and the phenotype analysis showed that these transgenic plants were more sensitive to salt and alkali treatment compared to wild-type plants. These results illustrate that over-expression of osa-MIR393 can negatively regulate rice salt-alkali stress tolerance.  相似文献   

7.
A plant microRNA regulates the adaptation of roots to drought stress   总被引:2,自引:0,他引:2  
Chen H  Li Z  Xiong L 《FEBS letters》2012,586(12):1742-1747
  相似文献   

8.
Methylglyoxal (MG) is a key signaling molecule resulting from glycolysis and other metabolic pathways. During abiotic stress, MG levels accumulate to toxic levels in affected cells. However, MG is routinely detoxified through the action of DJ1/PARK7/Hsp31 proteins that are highly conserved across kingdoms and mutations in such genes are associated with neurodegenerative diseases. Here, we report for the first time that, similar to abiotic stresses, MG levels increase during biotic stresses in plants, likely contributing to enhanced susceptibility to a wide range of stresses. We show that overexpression of yeast Heat shock protein 31 (Hsp31), a DJ-1 homolog with robust MG detoxifying capabilities, confers dual biotic and abiotic stress tolerance in model plant Nicotiana tabacum. Strikingly, overexpression of Hsp31 in tobacco imparts robust stress tolerance against diverse biotic stress inducers such as viruses, bacteria and fungi, in addition to tolerance against a range of abiotic stress inducers. During stress, Hsp31 was targeted to mitochondria and induced expression of key stress-related genes. These results indicate that Hsp31 is a novel attractive tool to engineer plants against both biotic and abiotic stresses.  相似文献   

9.
Biotic and abiotic stress conditions produce reactive oxygen species (ROS) in plants causing oxidative stress damage. At the same time, ROS have additional signaling roles in plant adaptation to the stress. It is not known how the two seemingly contrasting functional roles of ROS between oxidative damage to the cell and signaling for stress protection are balanced. Research suggests that the plant growth regulator auxin may be the connecting link regulating the level of ROS and directing its role in oxidative damage or signaling in plants under stress. The objective of this review is to highlight some of the recent research on how auxin’s role is intertwined to that of ROS, more specifically H2O2, in plant adaptation to oxidative stress conditions.  相似文献   

10.
11.
12.
Release from enemies can lead to rapid evolution in invasive plants, including reduced metabolic investment in defence. Conversely, reassociation with enemies leads to renewed evolution of defence, but the potential costs of this evolution are poorly documented. We report increased resistance of the invader Ambrosia artemisiifolia after reassociation with a coevolved specialist herbivore, and that this increase corresponds with reduced abiotic stress tolerance. Herbivore resistance was higher, but drought tolerance was lower in plants from populations with a longer reassociation history, and this corresponded with changes in phenylpropanoids involved in insect resistance and abiotic stress tolerance. These changes were corroborated by shifts in the expression of underlying biosynthetic genes and plant anti-oxidants. Together, our findings suggest rapid evolution of plant traits after reassociation with coevolved enemies, resulting in genetically based shifts in investment between abiotic and biotic stress responses, providing insights into co-evolution, plant invasion and biological control.  相似文献   

13.
Kemal Kazan 《Annals of botany》2013,112(9):1655-1665
  相似文献   

14.
Choi HW  Hwang BK 《Planta》2012,235(6):1369-1382
In plants, biotic and abiotic stresses regulate the expression and activity of various peroxidase isoforms. Capsicum annuum EXTRACELLULAR PEROXIDASE 2 (CaPO2) was previously shown to play a role in local and systemic reactive oxygen species bursts and disease resistance during bacterial pathogen infection. Here, we report CaPO2 expression patterns and functions during conditions of biotic and abiotic stress. In pepper plants, CaPO2 expression was strongly induced by abscisic acid, but not by defense-related plant hormones such as salicylic acid, ethylene and jasmonic acid. CaPO2 was also strongly induced by abiotic and biotic stress treatments, including drought, cold, high salinity and infection by the hemibiotrophic fungal pathogen Colletotrichum coccodes. Loss-of-function of CaPO2 in virus-induced gene silenced pepper plants led to increased susceptibility to salt- and osmotic-induced stress. In contrast, CaPO2 overexpression in transgenic Arabidopsis thaliana plants conferred enhanced tolerance to high salt, drought, and oxidative stress, while also enhancing resistance to infection by the necrotrophic fungal pathogen Alternaria brassicicola. Taken together, these results provide evidence for the involvement of pepper extracellular peroxidase CaPO2 in plant defense responses to various abiotic stresses and plant fungal pathogens.  相似文献   

15.
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.  相似文献   

16.
Histidine kinases have been shown to mediate responses to endogenous and exogenous stimuli in organisms such as yeast, bacteria and plants. In the model plant Arabidopsis, histidine kinases have been shown to function in hormone signaling, and abiotic and biotic stress responses. More recently, the least characterized of the Arabidopsis histidine kinases, AHK5, was demonstrated to function in resistance toward the virulent bacterium Pseudomonas syringae pv tomato DC3000 (PstDC3000) and the necrotrophic fungus Botrytis cinerea, and as a negative regulator of tolerance toward salinity. Here, we present data which indicate that AHK5 also impacts on drought stress resistance and on the outcome of an incompatible interaction with avrRpm1-expressing PstDC3000 (PstDC3000 (avrRpm1)). We present a model which proposes a role for reactive oxygen species (ROS) and hormones in integrating abiotic and biotic stress responses via AHK5.  相似文献   

17.
Plants encounter many biotic agents, such as viruses, bacteria, nematodes, weeds, and arachnids. These entities induce biotic stress in their hosts by disrupting normal metabolism, and as a result, limit plant growth and/or are the cause of plant mortality. Some biotic agents, however, interact symbiotically or synergistically with their host plants. Some microbes can be beneficial to plants and perform the same role as chemical fertilizers and pesticides, acting as a biofertilizer and/or biopesticide. Plant growth promoting rhizobacteria (PGPR) can significantly enhance plant growth and represent a mutually helpful plant-microbe interaction. Bacillus species are a major type of rhizobacteria that can form spores that can survive in the soil for long period of time under harsh environmental conditions. Plant growth is enhanced by PGPR through the induction of systemic resistance, antibiosis, and competitive omission. Thus, the application of microbes can be used to induce systemic resistance in plants against biotic agents and enhance environmental stress tolerance. Bacillus subtilis exhibits both a direct and indirect biocontrol mechanism to suppress disease caused by pathogens. The direct mechanism includes the synthesis of many secondary metabolites, hormones, cell-wall-degrading enzymes, and antioxidants that assist the plant in its defense against pathogen attack. The indirect mechanism includes the stimulation of plant growth and the induction of acquired systemic resistance. Bacillus subtilis can also solubilize soil P, enhance nitrogen fixation, and produce siderophores that promote its growth and suppresses the growth of pathogens. Bacillus subtilis enhances stress tolerance in their plant hosts by inducing the expression of stress-response genes, phytohormones, and stress-related metabolites. The present review discusses the activity of B. subtilis in the rhizosphere, its role as a root colonizer, its biocontrol potential, the associated mechanisms of biocontrol and the ability of B. subtilis to increase crop productivity under conditions of biotic and abiotic stress.  相似文献   

18.
谢兆辉 《遗传》2009,31(8):809-817
世界范围内, 农作物的产量都容易受到各种生物和非生物因素的影响, 对植物逆境适应性反应机制的深入研究有助于我们采取新的措施, 以提高作物的逆境适应性。以前通常认为植物适应逆境胁迫的机制主要涉及相关基因在转录水平的调节, 然而, 近来发现部分内源小RNAs(siRNAs), 如miRNAs、 nat-siRNAs和 lsiRNAs不仅可以调节植物的生长发育,而且在植物逆境反应中具有重要作用。文章就这些内源小RNAs在氧、矿质元素、干旱、低温、脱落酸、机械、重金属、生物及其他环境因素胁迫中的作用机制做一概述。  相似文献   

19.
Role of salicylic acid in plant abiotic stress   总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays many roles in plant physiology. Besides pathogenesis-related resistance, SA is involved in the response to abiotic stress. However, the effects of SA on plant resistance to abiotic stress were found contradictionary, and the actual role of SA in abiotic stress remains unresolved. Generally, deficiency of SA or a very high level of SA increase the plant susceptibility to abiotic stress. The optimal levels for the highest stress tolerance range from 0.1 mM to 0.5 mM for most plants. But the role of SA at a certain level in moderate and severe abiotic stress may be different. This can be attributed to redox regulations in plant cells. In this paper, we discuss the relationship between reactive oxygen species (ROS) and SA, and propose a subsequent intracellular signal transduction network of SA and ROS under abiotic stress. Anti-stress substances besides antioxidant enzymes induced by SA are also summarized.  相似文献   

20.
Sphingolipids, including sphingosine-1-phosphate (S1P), have been shown to function as signaling mediators to regulate diverse aspects of plant growth, development, and stress response. In this study, we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response. Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA), and decreased tolerance to salt and oxidative stress, when compared with the wild type. Furthermore, the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress, indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress. Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号