首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
A new p-coumaric acid (4-hydroxycinnamic acid) hydroxylase was detected in mung bean seedlings treated with tentoxin, a fungal toxin, in which polyphenol oxidase that hydroxylates a wide variety of monophenols in vitro was completely eliminated. The enzyme required molecular oxygen and showed a pH optimum of 5.0. The enzyme acted only on p-coumaric acid (Km, 3.0 X 10(-5) M), while its specificity for the electron donor was rather broad. The Km value for NADPH (1.5 X 10(-4) M) was much lower than that for L-ascorbic acid (1.0 X 10(-2) M), although the Vmax value was almost the same with both electron donors. The enzyme was potently inhibited by beta-mercaptoethanol (Ki, 3.5 X 10(-6) M) and diethyldithiocarbamate (Ki, 2.3 X 10(-4) M), but was insensitive to p-chloromercuribenzoate. The enzyme was localized in the cell organelles which sedimented between mitochondria and endplasmic reticulum on sucrose density gradient centrifugation. The enzyme activity in the seedling was changed in response to induction by light in a manner suggesting its involvement in biosynthesis of phenolic compounds in mung bean seedlings.  相似文献   

2.
1. An enzyme responsible for the conversion of p-coumarate into caffeate was purified 97-fold from Streptomyces nigrifaciens. The enzyme had a molecular weight of 18000 as determined by Sephadex G-100 gel filtration and was homogeneous on polyacrylamide-gel electrophoresis. 2. The preparation exhibited both p-coumarate hydroxylase and caffeate oxidase activities. 3. Stoicheiometry of the reaction indicated a mono-oxygenase-mediated catalysis consuming 1mol of O(2)/mol of substrate hydroxylated. 4. NADH, NADPH, tetrahydropteroylglutamate or ascorbate act as electron donors for the reaction, ascorbate being inhibitory at higher concentrations. 5. The optimum enzyme activity was at about pH7.7 and 40 degrees C, with an activation energy of 39kJ/mol. 6. Monophenols such as p-hydroxyphenylpropionate, p-hydroxyphenylacetate, l-tyrosine and dl-p-hydroxyphenyl-lactate were also hydroxylated by the preparation, in addition to p-coumarate. 7. The enzyme was a copper protein having 0.38% copper in a bound form. 8. Thiol-group inhibitors did not affect the reaction. 9. The relationship of the enzyme to other hydroxylases is discussed.  相似文献   

3.
We have previously proposed a chlorogenic acid biosynthetic pathway which involves a transesterification reaction between hydroxycinnamoyl D-glucose and D-quinic acid. The proposed pathway was based on tracer experimental results (Kojima, M., and Uritani, I. (1972) Plant Cell Physiol. 13, 311-319). The enzyme that catalyzes the above reaction has been purified 160-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. The purified enzyme yielded one band of 26,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000 by gel filtration chromatography. Therefore, the enzyme seems to consist of a single polypeptide of 25,000-26,000 daltons. The isoelectric point of the enzyme was 8.6. The optimum pH of the enzyme reaction was 6.0. The enzyme did not require any metal for activity and showed a broad substrate specificity toward hydroxycinnamoyl D-glucose as donors. The Km and Vmax values were 3.7 mM and 8.5 units/mg of protein for t-cinnamoyl D-glucose, 3.9 mM and 15.1 units/mg of protein for p-coumaroyl D-glucose, and 14.3 mM and 38.1 units/mg of protein for caffeoyl D-glucose. The enzyme showed a strict substrate specificity toward D-quinic acid-related compounds as acceptors; the Km and Vmax values were 16.7 mM and 15.1 units/mg of protein for D-quinic acid, 250 mM and 19.0 units/mg of protein for shikimic acid, and there was no activity with either L-malic acid or meso-tartaric acid. The enzyme activity changed in a manner suggesting its involvement in chlorogenic acid biosynthesis during incubation of sliced sweet potato root tissues.  相似文献   

4.
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases.  相似文献   

5.
Previously, we isolated t-cinnamoyl-D-glucose as a possible intermediate in chlorogenic acid biosynthesis from sweet potato root. The enzyme which catalyzes the formation of t-cinnamoyl-D-glucose has been purified 539-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. It required UDP-glucose as a glucosyl donor. Its molecular weight was estimated to be 45,000 by gel filtration chromatography through Sephadex G-100. Its Km values were 0.2 mM for t-cinnamic acid and 0.1 mM for UDP-glucose. It also showed activity toward various aromatic carboxylic acids other than t-cinnamic acid with the following relative activities at the concentration of 1.8 mM: t-cinnamic acid, 100; p-coumaric acid, 57; o-coumaric acid, 52; caffeic acid, 15; benzoic acid, 71; ferulic acid, 27; 4-hydroxyl-3-methoxy-benzoic acid, 35. When p-coumaric acid was used as a substrate, the enzyme introduced the glucosyl group exclusively to a carboxyl group, not to a hydroxyl group on a benzene ring. It was inhibited by p-chloromercuribenzoate and HgCl2. Its activity in the extract from sliced root decreased during the first 28 h after slicing, then increased to the original level by 75 h. The apparent decrease seemed to be caused by the appearance of an inhibitory factor of high molecular weight in the tissue extract.  相似文献   

6.
Indole-3-acetaldehyde oxidase (IAAld-oxidase) occurs in pea in two forms, of which the first, more active enzyme, has its pH optimum at 4.5, while the second, barely half as active, has a pH optimum at 7.0. Only the pH 4.5 oxidase can be resolved from the acetone powder. Besides IAA1d the more stable IA1d was used as substrate in testing the enzymatic activity. The pea enzyme seems not to be a dismutase since indolylmethanol or indolylethanol were not formed as products. Pyridine nucleotide coenzymes did not activate the partially purified enzyme. The pH 4.5 oxidase was inhibited by more than 50 % by IAA > L-asp > tryptophol > indoleacetylaspartic acid > 2,4-D (at 1 mM concentration). The pH 7.0 oxidase was inhibited relatively more weakly, a stronger than 50 % inhibition was caused only by NAA > L-asp. The oxidases were clearly distinguished by the response to L-asparagine (1 mM): the activity of the pH 4.5 oxidase was increased (+ 12 %), while the activity of the pH 7.0 oxidase was decreased (-71 %). In preliminaryin vitro experiments the phytohormones (1 mM) kinetin and GA3 increased the conversion of IAAld to IAA, while ABA decreased it.  相似文献   

7.
The pH optimum of rat liver phenylalanine hydroxylase is dependent on the structure of the cofactor employed and on the state of activation of the enzyme. The tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase has a pH optimum of about 8.5. In contrast, the 6,7-dimethyltetrahydropterin-dependent activity is highest at pH 7.0. Activation of phenylalanine hydroxylase either by preincubation with phenylalanine or by limited proteolysis results in a shift of the pH optimum of the tetrahydrobiopterin-dependent activity to pH 7.0. Activation of the enzyme has no effect on the optimal pH of the 6,7-dimethyltetrahydropterin-dependent activity. The different pH optimum of the tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase is due to a change in the properties of the enzyme when the pH is increased from pH 7 to 9.5. Phenylalanine hydroxylase at alkaline pH appears to be in an altered conformation that is very similar to that of the enzyme which has been activated by preincubation with phenylalanine as determined by changes in the intrinsic protein fluorescence spectrum of the enzyme. Furthermore, phenylalanine hydroxylase which has been preincubated at an alkaline pH in the absence of phenylalanine and subsequently assayed at pH 7.0 in the presence of phenylalanine shows an increase in tetrahydrobiopterin-dependent activity similar to that exhibited by the enzyme which has been activated by preincubation with phenylalanine at neutral pH. Activation of the enzyme also occurs when m-tyrosine or tryptophan replace phenylalanine in the assay mixture. The predominant cause of the increase in activity of the enzyme immediately following preincubation at alkaline pH appears to be the increase in the rate of activation by the amino acid substrate. However, in the absence of substrate activation, phenylalanine hydroxylase preincubated at alkaline pH displays an approximately 2-fold greater intrinsic activity than the native enzyme.  相似文献   

8.
IAA oxidase preparations from fresh sweet potato tuber discs oxidized IAA only in the presence of added phenolic cofactors, and the pH optimum for enzyme activity depended on the cofactor used. Ageing of tuber discs, either by aeration in distilled water or by incubation on moist filter paper, resulted in increased peroxidase and phenol-stimulated IAA oxidase activities, as well as the development of IAA oxidase activity in the absence of added cofactors. High phenolase activity of fresh tuber discs decreased considerably with ageing. Phenol-stimulated IAA oxidase activity reached maximal levels before IAA oxidase activity in the absence of added cofactors. Enzyme preparations from aged tuber discs had double pH optima, similar to those previously described for sweet potato root IAA oxidase preparations. IAA in the concentration range 10?4 to 10?2 M inhibited the increase in peroxidase and IAA oxidase activities with ageing. DCP-stimulated IAA oxidase activities in preparations from both fresh and aged sweet potato tuber discs were inhibited by manganous ion.  相似文献   

9.
There was an obvious decrease in caffeic acid derivatives during the boiling of cube-shaped blocks of sweet potatoes. They also decreased in a mixture of freeze-dried sweet-potato powder and water maintained at room temperature. Ascorbic acid prevented the decrease, supporting the occurrence of an enzyme reaction with polyphenol oxidase (PPO). 5-O-Caffeoylquinic acid (5-CQA, "3-O-caffeoylquinic acid" as a trivial name) and 3,5-di-O-caffeoylquinic acid (3,5-CQA), major phenolic compounds of sweet potato, did not change when they were separately heated in boiling water. When the mixture of powdered sweet potato and water was heated at 100 degrees C, there was only a negligible decrease in the total amount of phenolic compounds, and portions of 5-CQA and 3,5-CQA were found to be isomerized to 3-CQA, 4-CQA, 3,4-CQA, and 4,5-CQA. The content and composition of the phenolic compounds in sweet potatoes differed between fresh and long-stored ones, as did their response to heating.  相似文献   

10.
槐尺蠖多酚氧化酶的纯化及酶学特征   总被引:8,自引:2,他引:6  
经40%饱和度硫酸铵分级沉淀,Sephadex G-100凝胶过滤等步骤,将槐尺蠖Semiothisa cinerearia Bremer et Grey 多酚氧化酶纯化,纯化倍数为6.96倍。该酶对焦性没食子酸,邻苯二酚和L多巴的Km值分别为0.23 mmol/L, 0.48 mmol/L和0.49 mmol/L。多酚氧化酶在pH 7.0,37℃时活性最高,并在40℃以上条件下,随着保温时间的延长酶活力下降。用槲皮苷和硫脲作抑制剂对该酶活性的抑制结果表明,这两种抑制剂分别属于竞争性和非竞争性抑制剂。  相似文献   

11.
The localization of phenylalanine ammonia-lyase [EC 4.3.1.5] within sweet clover (Melilotus alba) leaves was investigated. Apical buds and axillary leaves contained 15 to 30 times more enzyme activity than did mature leaves. Mesophyll protoplasts were prepared by digesting young leaves with Cellulysin and Macerase and were gently ruptured yielding intact chloroplasts. These chloroplast preparations exhibited neither phenylalanine ammonia-lyase nor o-coumaric acid O-glucosyltransferase activities. The general enzymic properties of sweet clover leaf phenylalanine ammonia-lyase were similar to those described for this enzyme isolated from other plant species. The conversion of l-phenylalanine to trans-cinnamic acid, which occurred at an optimum pH of about 8.7, was strongly inhibited by the metabolites trans-cinnamic and o-coumaric acids. In contrast, o-coumaric acid glucoside, coumarin, p-coumaric acid, and melilotic acid had no significant effect on the reaction rate.  相似文献   

12.
Neutral proteinase I (the first peak in DEAE-cellulose chromatogrraphy) was purified from the Amberlite IRC-50 adsorbed fraction by chromatography on DEAE-cellulose and gel filtration through Sephadex G-100. It shows an optimum pH of 7.0 for milk casein. The enzyme was found to be stable in the pH range of 5.5 to 12.0. The molecular weight of the enzyme was estimated to be about 41,000 by gel filtration. The enzyme had neither aminopeptidase nor carboxypeptidase activity, but degraded carbobenzoxy-glycyl-phenyl-alanine amide, poly-l-lysine and poly-l,α-glutamic acid. The enzyme was inhibited by ethylenediaminetetraacetate, but not inhibited by diisopropylphosphorofluoridate and potato inhibitor.  相似文献   

13.
从中国土样中筛选到一株能产生胆红素氧化酶的微生物(Myrothecium Verrucaria)J-1,培养后,分离纯化,最后经QAE—Sephadex A50柱层析,得到胆红素氧化酶比活为207.65 U/A 280nm,总产率为22.3%。纯酶紫外吸收峰为278 nm,凝胶电泳为单一色带。分子量估计为52000。它能迅速、特异地氧化胆红素为胆绿素,并进一步氧化成目前还不清楚的紫色化合物。最佳作用pH为7.0,最佳作用温度为40℃。  相似文献   

14.
A glutathione S-transferase (GST) enzyme from corn (Zea mays L. Pioneer hybrid 3906) that is active with p-coumaric acid and other unsaturated phenylpropanoids was purified approximately 97-fold and characterized. The native enzyme appeared to be a monomer with a molecular mass of approximately 30 kD and an apparent isoelectric point at pH 5.2. The enzyme had a pH optimum between 7.5 and 8.0 and apparent Km values of 4.4 and 1.9 mM for reduced glutathione (GSH) and p-coumaric acid, respectively. In addition to p-coumaric acid, the enzyme was also active with o-coumaric acid, m-coumaric acid, trans-cinnamic acid, ferulic acid, and coniferyl alcohol. In addition to GSH, the enzyme could also utilize cysteine as a sulfhydryl source. The enzyme activity measured when GSH and trans-cinnamic acid were used as substrates was enhanced 2.6- and 5.2-fold by the addition of 50 [mu]M p-coumaric acid and 7-hydroxycoumarin, respectively. 1H- and 13C-nuclear magnetic resonance spectroscopic analysis of the conjugate revealed that the enzyme catalyzed the addition of GSH to the olefinic double bond of p-coumaric acid. Based on the high activity and the substrate specificity of this enzyme, it is possible that this enzyme may be involved in the in vivo conjugation of a number of unsaturated phenylpropanoids.  相似文献   

15.
Pyruvate decarboxylase [2-oxo acid carboxy-lyase, EC 4.1.1.1] was isolated from sweet potato roots and was partially purified from healthy and diseased tissues. There was no appreciable difference in properties between the enzymes from healthy and diseased tissues. The molecular weight of the enzyme was found to be 240,000 by polyacrylamide gel electrophoresis. Since sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a molecular weight of 60,000 for the monomeric form of the enzyme, it is likely that sweet potato pyruvate decarboxylase contains 4 single polypeptide chains. The optimal pH of the decarboxylation reaction was 6.1--6.6. The Lineweaver-Burk double reciprocal plot curved upward, and the Hill coefficient was more than 1, with low concentrations of pyruvate. The enzyme was localized in the cytosol fraction. The activity of the enzyme increased in response to black-rot fungus infection, but decreased in response to cutting.  相似文献   

16.
Ellagic acid has been described as an inhibitor of tyrosinase or polyphenol oxidase and, therefore, of melanogenesis. In this work, we demonstrate that ellagic acid is not an inhibitor, but a substrate of mushroom polyphenol oxidase, an enzyme which oxidizes ellagic acid, generating its o-quinone. Because o-quinones are very unstable, we used an oxymetric method to characterize the kinetics of this substrate, based on measurements of the oxygen consumed in the tyrosinase reaction. The catalytic constant is very low at both pH values used in this work (4.5 and 7.0), which means that the Michaelis constant for the oxygen is low. The affinity of the enzyme for the substrate is high (low K(m) (S)), showing the double possibility of binding the substrate. Moreover, a new enzymatic method is applied for determining the antioxidant activity. Ellagic acid shows high antioxidant activity (EC50 = 0.05; number of electrons consumed by molecule of antioxidant = 10), probably because of the greater number of hydroxyl groups in its structure capable of sequestering and neutralizing free radicals.  相似文献   

17.
R. Saijo  T. Kosuge 《Phytochemistry》1978,17(2):223-225
Partially purified preparations from etiolated sorghum seedlings catalyzed the conversion of DAHP to DHQ. The reaction catalysed by DHQ synthetase was stimulated by 0.1 μM to 0.1 mM NAD in the presence O-0.5 mM Co2+. NADH at 1 μM stimulated the reaction as much as 50% but became inhibitory at 100μM. Co2+ at 0.5mM stimulated enzyme activity 3-fold; Mg2+, Mn2+, Cu2+, and Zn2+ were not stimulatory. EDTA at 5 mM inhibited the reaction 95% but its effects were reversed by equal concentrations of Co2+. Phe, Tyr, Trp, t-cinnamate, several hydroxylated cinnamates, DHS, quinate, and shikimate at 0.3 mM failed to affect enzyme activity but slight inhibition occurred with DHQ and protocatechuic acid at 0.3 mM, inhibition being 14 % and 22 %, respectively. DHQ synthetase activity also was detected in spinach leaves and potato tuber tissue. Synthetase activity appeared to increase in response to injury of potato tuber and sweet potato root tissues.  相似文献   

18.
IAA oxidase preparations from sweet potato (Ipomoea batatas) roots oxidised IAA in the absence of added phenolics. Activity was optimal around pH 6·8 and a minor pH optimum occurred around pH 4·3. Both chlorogenic and caffeic acids inhibited IAA oxidase activity at high concentrations (0·6–5·7 nmol/ml) but stimulated enzyme activity at low concentrations (0·10-0·55 nmol/ml); these effects were dependent on IAA and enzyme concentration and on pH. The activities of both substances are compared with those of other phenolics known to stimulate and inhibit plant IAA oxidases.  相似文献   

19.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   

20.
Acanthamoeba castellanii has a phenol oxidase activity that is believed to be a laccase. Enzyme activity was found in the outer cyst wall, in the cytoplasm of encysting amoebae and in the encystment medium. Encystment procedures were modified to promote an increase in the amount of soluble enzyme secreted during encystation. Acanthamoeba polyphenol oxidase has a pH optimum of 6.0 and a Km value of 0.21 mM with dihydroxyphenylalanine. The enzyme does not oxidize tyrosine, and it is inhibited by chloride but not by inhibitors of peroxidase. Its synthesis coincides with encystation, and known inhibitors of polyphenol oxidase prevent encystation. Polyphenol oxidase may have a role in making the cyst resistant to mechanical and chemical breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号