首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
有毒污染物对生物体的毒性效应与自由基反应   总被引:1,自引:0,他引:1  
概括介绍了有毒污染物对生物体毒性效应的基本类型、毒性效应研究的热点问题、毒物诱导自由基产生的机制和自由基对机体的损害机制等,最后指出今后应进一步认识和加强研究的几个方面的问题,如新型有毒污染物对生物体的毒性效应及其毒性效应产生的机制、慢性毒性效应有毒污染物的毒性效应、生态毒理学方法诊断和评价复合污染物对生物的遗传毒性效应、生物标记物研究和合理清除自由基等。  相似文献   

2.
苯并(a)芘对大弹涂鱼肝脏过氧化氢酶活性的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
过氧化氢酶 (CAT)是生物体内一种含巯基 ( -SH)的抗氧化酶 ,可与谷胱甘肽过氧化物酶一起 ,清除超氧化物歧化酶歧化超氧阴离子自由基(O2 - )产生的过氧化氢 (H2 O2 ) ,进而阻断可产生活性极高的羟自由基 (OH)的Haber Weiss反应 :M O2 - H2 O2 →M2 OH OH O2 (M 为金属离子 ) ,因而在生物体的抗氧化防御系统中占有重要地位[1 2 ] 。研究表明 ,包括CAT在内的抗氧化防御系统的成分可由于氧化污染的胁迫而发生改变 ,尝试以这些抗氧化防御系统成分的变化作为氧化胁迫的生物指标的研究正在成为毒理学研究的…  相似文献   

3.
现代医学证明,机体和氧进行正常交换时产生的自由基,能损伤蛋白质、核酸等生物大分子,改变细胞结构与功能,从而影响人体健康、引发疾病、甚至危及生命。微量营养素中的维生素E、维生素C、β-胡萝卜素等维生素和某些抗氧化酶依赖的硒、锌、铜等元素,是生物体内抗氧化防御系统的组成成分,可直接或间接地清除活性氧或阻断连锁氧化反应,保护细胞及生物大分子免受氧化损伤。因此,它们在抗氧化防御系统中具有重要的作用,合理摄入这些微量营养素,对预防动脉硬化、抗癌、改善免疫功能及延缓衰老等有着特殊的意义。  相似文献   

4.
氧化胁迫是生物体面对逆境时的重要反应。在与逆境和活性氧做斗争的过程中,细胞进化出一套完整的应答调控机制,通过调节体内活性氧的代谢平衡,来保护DNA、脂质和蛋白质等免受氧化攻击。本文以酿酒酵母为例,根据近年来国内外研究的进展,围绕其在氧化胁迫应答过程中的三道保护屏障,即抗氧化物质和防御酶系统、转录调节和氧化物降解以及细胞器自噬,综述了其抗氧化代谢机理,为深入认识细胞的抗氧化应答机制奠定基础。  相似文献   

5.
氧化应激是指机体内产生过多的氧化物质,超出其抗氧化能力而引起的一种氧化与抗氧化失衡状态。结核病是由结核分枝杆菌感染引起的一种慢性炎症疾病,其感染程度及炎症反应的发生发展与氧化应激水平具有密切关系。正确认识并了解氧化应激与结核病之间的关系,不仅可为结核病诊断提供一些新型生物标志物或新思路,对于结核病的治疗及预后监测也具有重要的临床意义。  相似文献   

6.
腐殖质呼吸作用及其生态学意义   总被引:12,自引:0,他引:12  
武春媛  李芳柏  周顺桂 《生态学报》2009,29(3):1535-1542
腐殖质呼吸是厌氧环境中普遍存在的一种微生物呼吸代谢模式.自1996年发现以来,日益成为生态学与环境科学领域的研究热点.在厌氧条件下,一些微生物能以腐殖质作为唯一电子受体,氧化环境中的有机质或者甲苯等环境有毒物质,产生CO2,参与碳循环;同时,腐殖质呼吸作用产生的还原态腐殖质可以还原环境中的一些氧化态物质,如Fe(III)、Mn(IV)、Cr(VI)、U(VI) 、硝基芳香化合物和多卤代污染物.因此,腐殖质呼吸能够影响环境中C、N、Fe、Mn以及一些痕量金属元素的生物地球化学循环,并且能够促进重金属以及有机污染物的脱毒,在水体自净、污染土壤原位修复、污水处理等方面具有积极作用.  相似文献   

7.
自由基生物化学概念   总被引:3,自引:0,他引:3  
自由基是一类具有高度活性的物质,可在细胞代谢过程中连续不断地产生,并参与生物体内正常的生理生化过程。但是,过量的自由基会造成生物体损伤,是引起多种疾病和生物衰老的重要原因。因此,对自由基的研究目前已成为国内外许多科学家极为关注的课题。  相似文献   

8.
氧化应激是一种氧化还原失衡的状态,易引起生物体组织细胞发生氧化损伤。通过激活抗氧化系统调节氧化还原平衡是生物体内普遍存在的氧化应激响应机制。硫化氢(hydrogen sulfide, H2S)是生物体内重要的信号分子,它能通过多种途径调节机体生理反应和胁迫响应。本文综述了植物中H2S的产生途径,H2S常见供体的特性,H2S、活性氧(reactive oxygen species, ROS)和活性氮(reactive nitrogen species, RNS)在调节植物氧化应激响应中的研究进展;重点讨论了H2S调节植物氧化应激响应的方式,及其与ROS和RNS在植物氧化还原平衡调节中的相互作用调控,为理解植物氧化应激响应过程中信号分子的作用机制提供参考。  相似文献   

9.
随着蛋白质组学的发展和每年有大量环境污染物进入土壤环境中,污染胁迫模式动物的相关生物标志物受到日益关注。蚯蚓,作为土壤中最大的无脊椎动物,是研究和评价土壤生态污染良好的模式动物。研究蚯蚓的蛋白质组学,对于寻找环境生态污染相关生物标志物和阐明生态毒理学机制有着十分重要的现实意义。目前已知的污染胁迫下蚯蚓蛋白质组学研究,提供了几个特定污染物胁迫蚯蚓的蛋白表达谱。这些蛋白涉及许多生物学过程,例如信号传导、糖酵解、能量代谢、分子伴侣和转录调节,提示了相关污染物可能的生态毒理学机制,有望成为潜在的生物标志物,用于有毒污染物的监测,但其特异性需要进一步试验的验证。对蚯蚓受污染胁迫的蛋白质组表达谱及潜在生物标志物进行简要综述。  相似文献   

10.
动物界中有许多有毒的种类。它们的体内能产生毒素,这些毒素存在于动物体内的某些细胞、组织及器官中或分泌到体外,具有防御、辅助摄食等功能。毒素对其它动物体具有危害作用。  相似文献   

11.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

12.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

13.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

14.
DNA damage caused by exposure to reactive oxygen species is one of the primary causes of DNA decay in most organisms. In plants, endogenous reactive oxygen species (ROS) are generated not only by respiration and photosynthesis, but also by active responses to certain environmental challenges, such as pathogen attack. Significant extracellular sources of activated oxygen include air pollutants such as ozone and oxidative effects of UV light and low-level ionizing radiation. Plants are well equipped to cope with oxidative damage to cellular macromolecules, including DNA. Oxidative attack on DNA generates both altered bases and damaged sugar residues that undergo fragmentation and lead to strand breaks. Recent advances in the study of DNA repair in higher plants show that they use mechanisms similar to those present in other eukaryotes to remove and/or tolerate oxidized bases and other oxidative DNA lesions. Therefore, plants represent a valuable model system for the study of DNA oxidative repair processes in eukaryotic cells.  相似文献   

15.
Oxidative stress-induced DNA damage by particulate air pollution   总被引:14,自引:0,他引:14  
Risom L  Møller P  Loft S 《Mutation research》2005,592(1-2):119-137
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.  相似文献   

16.
In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.  相似文献   

17.
The aim of this work was to determine the seasonal changes in the activities of selected biomarkers in Capoeta umbla (Heckel, 1843) caught from Uzuncayir Dam Lake (Tunceli, Turkey) and to evaluate the effects of environmental factors on these activities. Fish were sampled on seasonal basis, and superoxide dismutase, catalase, glutathione peroxidase activities and levels of glutathione and malondialdehyde in gills were determined. Significant variations of oxidative stress biomarkers were observed between seasons and sites. The results of this study show that seasonal variations of oxidative stress responses and lipid peroxidation in gills of C. umbla are sensitive to the contaminants present in water of Uzuncayir Dam Lake and selected parameters are in valuable biomarkers for monitoring of water systems, since they give an early warning signal of effects of xenobiotics on aquatic organisms at molecular levels which help to prevent their effects at organismal level.  相似文献   

18.
With increasing industrialization, numerous air pollutants are generated. This research aimed to investigate the effects of inhalation of oxidative pollutants. H2O2 was used to simulate oxidative air pollutants, and glutathione, a reducing agent that is widely distributed in organisms, was used as an antagonist, to protect cells from oxidative stress. H2O2 was diluted using two gradients (0.05 mM, 0.20 mM, 0.80 mM, 3.20 mM and 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM) and GSH was dissolved at 20 μM. MTT, MDA, ROS, GSH, and TSLP were used as biomarkers to evaluate oxidative stress and possible resulting molecular events. A dose–response relationship was observed between H2O2 concentrations and the above-mentioned biomarkers. Glutathione significantly reduced levels of oxidative stress.  相似文献   

19.
Superoxide dismutase (SOD, EC 1.15.1.1) is an enzyme involved in the scavenging of reactive oxygen species (ROS) into molecular oxygen and hydrogen peroxide. In this study, a copper-zinc superoxide dismutase (Cu-ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene in aquatic midge, Chironomus riparius (CrSODs) was identified using an Expressed Sequence Tag (EST) database generated by 454 pyrosequencing. A multiple sequence alignment of C. riparius sequences revealed high homology with other insect sequences in terms of the amino acid level. Phylogenetic analysis of the CrSODs revealed that they were grouped with SODs of other organisms, such as Polypedilum vanderplanki, Drosophila melanogaster, Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus and Bombyx mori. Expression of the corresponding CrSODs was analyzed during different developmental stages and following exposure to various environmental contaminants with different mode of actions i.e., paraquat, cadmium, benzo[a]pyrene, and chloropyrifos. CrSOD gene expression was significantly up or down regulated in response to exposure to the chemicals tested. The overall results suggested that SOD gene expression provided a platform for the understanding of oxidative stress responses caused by exposure to various environmental contaminants, and the SOD genes could be used as biomarkers for environmental disturbances such as oxidative stress initiated by xenobiotics.  相似文献   

20.
水域是地球环境的重要组成部分,也是最易受污染的生态系统之一。水生态系统中不同营养级别的水生生物可通过摄食、接触等多种途径摄入水体中的污染物。因此,监测水域污染物对水生生物和生态系统的影响,解析污染物对不同水生生物的毒性机制,筛选敏感、有效的生物标志物对生态毒理学研究和环境风险评价具有重要意义。RNA测序(RNA sequencing,RNA?seq)技术因所需样品量少,且不需参考序列,可在整体水平上鉴定基因差异表达,成为水生生物生态毒理学研究的最佳方法之一。基于此,介绍了RNA?seq技术的基本流程与数据分析过程,对该技术在不同生态位的水生生物(如鱼类、两栖类、贝类、甲壳类等)生态毒理学中的应用展开综述,并对RNA?seq技术面临的不足、挑战及发展趋势进行探讨,以期为该技术在水生生物生态毒理学研究中的应用,尤其是水生态环境中污染物胁迫水生生物机制的阐明及污染水域生态环境恢复提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号