首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
This review is dedicated to the structure and function of Golgi apparatus (GA). It summarizes contemporary data published in numerous experimental papers and in several reviews. Possible ways of intra-Golgi transport of proteins, existent models of structural and functional organization of Golgi organelle, as well as the issues of its biogenesis, posttranslational modification and sorting of proteins and lipids, and mechanisms of their trafficking are discussed. Special attention is paid to the role of coatomer proteins (COPI, COPII and clathrin), fusion proteins (SNAREs), and small GTPases (ARF, SARI) in the secretory pathway. In addition, the phenomena of ultrastructural alterations of GA due to various functional conditions and physiological stimuli are specifically accented. We included in this review our original data on a probable involvement of GA in water transport, and on the organization of atypical GA in microsporidia--intracellular parasitic protists.  相似文献   

2.
This review is dedicated to the structure and function of Golgi apparatus (GA). It summarizes contemporary data published in numerous experimental papers and in several reviews. Possible ways of intra-Golgi transport of proteins, existent models of structural and functional organization of Golgi organelle, as well as the issues of its biogenesis, posttranslational modification and sorting of proteins and lipids, and mechanisms of their traffic-king are discussed. Special attention is paid to the role of coatomer proteins (COPI, COPII and clathrin), fusion proteins (SNAREs), and small GTPases (ARF, SARI) in the secretory pathway. In addition, the phenomena of ultrastructural alterations of GA due to various functional conditions and physiological stimuli are specifically accented. We included in this review our original data on a probable involvement of GA in water transport, and on the organization of atypical GA in microsporidia--intracellular parasitic protists.  相似文献   

3.
The Golgi apparatus is a universal feature of eukaryotes, carrying out the key functions of processing, sorting and trafficking of newly synthesized membrane and secretory proteins. The Golgi apparatus has a clearly defined structure, comprising stacks of flattened cisternal membranes that in vertebrates are connected to form a ribbon. How this structure is maintained and how it relates to the functions of the Golgi apparatus has long been an area of interest. In this review I describe recent progress in the identification and characterization of the molecular machinery that together help generate the characteristic organization of this organelle.  相似文献   

4.
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.  相似文献   

5.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

6.
Distribution of xylosylation and fucosylation in the plant Golgi apparatus   总被引:4,自引:0,他引:4  
Antibodies have been immunopurified which are specific for carbohydrate epitopes containing the β1→2 xylose or α1→3 fucose residues found on complex N-linked glycans in plants. The antibody specificity was determined by taking advantage of an Arabidopsis thaliana N-glycosylation mutant which lacks N-acetyl-glucosaminyltransferase I and is unable to synthesize complex glycans. These antibodies were used to immunolocalize xylose- and fucose-containing glycoproteins in suspension-cultured sycamore cells (Acer pseudoplatanus). By mapping the enzymatic reaction products within the Golgi apparatus, the fucosyl- and xylosyltransferase subcellular localization was made possible using immunocytochemistry on thin sections of high-pressure frozen and freeze-substituted sycamore cells. This procedure allows a much better preservation of organelles, and particularly of the Golgi stack morphology, than that obtained with conventionally fixed samples. Glycoproteins containing β→2 xylose and α1→3 fucose residues were immunodetected in the cell wall, the vacuole, and the Golgi cisternae. The extent of immunolabeling over the different cisternae of 50 Golgi stacks was quantified after treatment with anti-xylose or anti-fucose antibodies. Labeling for xylose-containing glycoproteins was predominent in the medial cisternae, while fucose-containing glycoproteins were mainly detected in the trans compartment. Therefore, in plants, complex N-linked glycan xylosylation probably occurs mostly at the medial Golgi level and α1→3 fucose is mainly incorporated in the trans cisternae. Finally, fucose- and xylose-containing glycoproteins were also immunolocalized, albeit to a lesser extent, in earlier Golgi compartments. This indicates that the glycosylation events are a continuous process with some maxima in given compartments, rather than a succession of discrete and compartment-dependent steps.  相似文献   

7.
The differentiation of urothelial cells is characterized by the synthesis of uroplakins and their assembly into the asymmetric unit membrane. The Golgi apparatus (GA) has been proposed to play a central role in asymmetric unit membrane formation. We have studied the distribution and organization of the GA in normal mouse urothelial cells and in the superficial urothelial cells that undergo differentiation following cyclophosphamide-induced regeneration, in correlation with urothelial cell differentiation. In normal urothelium, immature basal cells have a simple GA, which is small and distributed close to the nucleus. In intermediate cells, the GA starts to expand into the cytoplasm, whereas the GA of terminally differentiated umbrella cells is complex, being large and spread over the whole basal half of the cytoplasm. During early stages of regeneration after cyclophosphamide treatment, the GA of superficial cells is simple and no markers of urothelial differentiation (uroplakins or asymmetric unit membranes, discoidal or fusiform vesicles, apical surface covered with microvilli) are expressed. At a later stage, the GA expands and, in the final stage of regeneration, when cells express all markers of terminal urothelial differentiation, the GA become complex once again. Our results show that: (1) GA distribution and organization in urothelial cells is differentiation-dependent; (2) the GA matures from a simple form in partially differentiated cells to a complex form in terminally differentiated superficial cells; (3) major rearrangements of GA distribution and organization correlate with the beginning of asymmetric unit membrane production. Thus, GA maturation seems to be crucial for asymmetric unit membrane formation. The work was supported by the Ministry of Education and Sport, Government of Republic of Slovenia, Slovenia (grant no. 3311-04-831450).  相似文献   

8.
Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin-associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER.  相似文献   

9.
Radiolabelled glucuronoxylan was formed by incubation of a Golgimembrane fraction from pea seedlings with UDP-(14C)GlcA andUDP-Xyl. Chelator-soluble glucuronoxylan was analysed by gelfiltration on Sepharose CL-6B and CL-2B, and was resolved intoa very high molecular weight peak (at least 7000 kDa) and apartially-excluded peak (50-75 kDa). Treatment of the latterpeak with proteinase K caused a change in elution behaviourcorresponding to the removal of a protein of 36-45 kDa. Theassociation between poly-saccharide and protein was not disruptedby high temperature or by high salt concentration, and was probablycovalent. When radioactive glucuronoxylan was formed using endoplasmicreticulum rather than Golgi membranes, protease treatment causeda decrease in molecular weight of approximately 20 kDa. Thechelator-insoluble glucuronoxylan produced by pea membraneswas also partly susceptible to protease treatment, since almosthalf of it was solubilized by incubation with proteinase K. Key words: Glucuronoxylan, Golgi apparatus, endoplasmic reticulum, Pisum  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号